Skip to main content
Log in

Investigation by ESR Spectroscopy of Biology Active Electron-Rich 1,10-Phenanthrocyanines of d-Elements (Soft Colloidal Glasses)

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The 1,10-phenanthrocyanines of d-elements were investigated by ESR spectroscopy both in the solid (glassy) state and in solutions. These are coordination compounds of a new structural class of apocyanines: chromophore binuclear cation complexes [M2+Ln(µ-PC)]2Xm (M2+ = Zn2+, Cd2+, Co2+, Pd2+and Pt2+; L = 1,10-phenanthroline, 2,9-Me2-1,10-phenanthroline, pyridine; X = AcO, Cl) with electron-rich bridged 1,10-phenanthrocyanine ligands µ-PC. They are presented as soft colloidal glasses capable of acting as inhibitors of tumor cell proliferation, fungicides and DNA complexones. The study of them by ESR spectroscopy showed that one of the possible mechanisms for the formation of spin centers is thermally directed singlet–triplet S0 → Tlow.-transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of Data and Materials

The materials are available in the databases of the Resource Center "Magnetic Resonance Research Methods" of St. Petersburg State University and the Institute of Silicate Chemistry of the Russian Academy of Sciences. All authors have reviewed the manuscript.

References

  1. S.P. McGlynn, T. Azumi, M. Kinoshita, Molecular Spectroscopy of the Triplet State (Prentice Hall, Englewood Cliffs, 1969)

    Google Scholar 

  2. V.N. Parmon, A.I. Kokorin, G.M. Zhidomirov, Stable Biradicals (Nauka, Moscow (in Russian), 1980)

    Google Scholar 

  3. E.G. Rosantsev, Organic paramagnetics, in: Saratov StateUniv., ed. by E.G. Rosantsev, M.D. Gol’dfeyn, V.F. Pulin (Saratov, 2000) (in Russian)

  4. M.D. Gol’dfeyn, E.G. Rosantsev, Free radicals and organic paramagnetics. Univ. Proc. Volga Region 1(5), 60–72 (2014). (in Russian)

    Google Scholar 

  5. E.V. Tretyakov, V.I. Ovcharenko, The chemistry of nitroxides in the molecular design of magnets. Russ. Chem. Rev. 78(11), 971–1012 (2009). https://doi.org/10.1070/RC2009v078n11ABEH004093

    Article  ADS  Google Scholar 

  6. C. Wentrup, M.J. Regimbald-Krnel, D. Müller, P. Comba, A thermally populated, perpendicularly twisted alkene triplet diradical. Angew. Chem. Int. Ed. 55(47), 14600–14605 (2016). https://doi.org/10.1002/anie.201607415

    Article  Google Scholar 

  7. Y. Morita, T. Aoki, K. Fukui, S. Nakazawa, K. Tamaki, S. Suzuki, A. Fuyuhiro, K. Yamamoto, K. Sato, D. Shiomi, A. Naito, T. Takui, K. Nakasuji, A new trend in phenalenyl chemistry: a persistent neutral radical, 2,5,8-tri-tertbutyl-1,3-diazaphenalenyl, and the excited triplet state of the gable syn-dimer in the crystal of column motif. Angew. Chem. Int. Ed. 41(10), 1793–1796 (2002). https://doi.org/10.1002/1521-3773(20020517)41:10%3c1793::AID-ANIE1793%3e3.0.CO;2-G

    Article  Google Scholar 

  8. K.K. Kalninsh, A.F. Podolsky, Triplet mechanism of depolymerization of sodium poly-α-methylstiryl. Macromolec. Comp. A. 42(5), 751–758 (2000). (in Russian)

    Google Scholar 

  9. K.K. Kalninsh, E.F. Panarin, Excited States in Chemistry of Polymers. (EPC St. Petersburg State UTD, St. Petersburg, 2007), p. 476 (ISBN 5-7937-0318-7) (in Russian)

  10. K.K. Kalninsh, Electronic Excitation in Chemistry. (Inst. Macromol. Comp. RAS, St. Petersburg, 1998), p. 323 (ISBN 5-7937-0009-9) (in Russian)

  11. M.-D. Li, T.R. Albright, P.J. Hanway, Direct spectroscopic detection and EPR investigation of a ground state triplet phenyl oxenium ion. J. Am. Chem. Soc. 137(32), 10391–10398 (2015). https://doi.org/10.1021/jacs.5b06302

    Article  Google Scholar 

  12. R.G. Pearson, Symmetry rules for chemical reactions: orbital topology and elementary processes (A Wiley-Interscience Publ, New York, 1976)

    Google Scholar 

  13. B.H. Lavenda, Statistical Physics: A Probabilistic Approach (Wiley-Interscience, New York, 1991), p.384

    Google Scholar 

  14. B.H. Lavenda, A New Perspective on Thermodynamics (Springer, New York, 2010), p. 220. https://doi.org/10.1007/978-1-4419-1430-9

  15. V.N. Demidov, An expression for the frequencies of the spectral bands of quasi-lattice translational vibrations of liquids in terms of a new thermodynamic model. J. Opt. Technol. 70(9), 623–627 (2003). https://doi.org/10.1364/JOT.70.000623

    Article  ADS  Google Scholar 

  16. V.N. Demidov, V.S. Antonov, Structural-thermodynamic self-similarity of low-energy vibrationally excited states of partially ordered condensed media. News St. Petersburg State Institute of Technology (Technical Univ.), pp. 20–24 (2010) (in Russian)

  17. V.N. Demidov, S.M. Sukharzhevsky, L.N. Vedeneeva, A.V. Zinchenko, T.B. Pakhomova, Investigation of the electron-rich binuclear Pt(II) 1,10-phenanthrocyanine [(py)2Pt(µ-phencyanine)Pt(py)2]Cl3 by the ESR method. Localization of PSC in temperature accessible electron-excited radical states. 15th Int. School-Conf. Magnetic Resonance and its applications (Spinus-2018). April 1–6, 2018, St. Petersburg, Russia, Abstr., pp. 160–162

  18. V.N. Demidov, S.M. Sukharzhevsky, S.V. Paston, A.V. Zinchenko, L.N. Vedeneeva, T.B. Pakhomova, Thermoinduced S0→T-transitions in electron-rich Zn(II) 1,10-phenanthrocyanines, DNA complexones containing dihydro-1,10-phenanthroline cycles related to NADH. News St. Petersburg State Univ. Ser.4, Phys., Chem. 4(62), 138–145 (2017). https://doi.org/10.21638/11701/spbu04.2017.203 (in Russian)

  19. I.B. Glebova, A.G. Badalyan, V.N. Demidov, R.D. Rochev, Cd(II) 1,10-phenanthrocyanines (bi-1,10-phenanthrolylenes): thermophysics of lowest electron triplet biradical states of soft colloidal glasses. II All-Russ. Conf. Abstr. “Organic radicals: fundamental and applied aspects”. 15–16 Dec. 2022, Moscow, p. 76 (in Russian)

  20. V.N. Demidov, S.M. Sukharzhevsky, A.G. Ivanova, N.E. Kotelnikova, Investigation of hybrid composite of cellulose hydrogel and electron-rich Zn(II) 1,10-phenanthrocyanine complex by ESR spectroscopy method. II All-Russ. Conf. Abstr. “Organic radicals: fundamental and applied aspects”. 15–16 Dec. 2022, Moscow, p. 75 (in Russian)

  21. V.N. Demidov, S.A. Simanova, A.I. Savinova, T.B. Pakhomova, Reactions of metal promoted C-C- coupling of coordinated 1,10-phenanthrolines in the synthesis of electron-rich d-element 1,10-phenanthrocyanines. Russ. J. Gen. Chem. 79(12), 2807–2814 (2009). https://doi.org/10.1134/S1070363209120391

    Article  Google Scholar 

  22. V.N. Demidov, Electron-rich 1,10-phenanthrocyanine complexes of d-elements: patterns of formation, spectral properties, structural and thermodynamic similarity—Diss. Doct. Chem. Sci., St. Petersburg State Technol. Inst. (Techn. Univ.), St. Petersburg, 2010, p. 450 (in Russian)

  23. O.N. Chupakhin, V.N. Charushin, Recent advances in the field of nucleophilic aromatic substitution of hydrogen. Tetrahedron Lett. 57(25), 2665–2672 (2016). https://doi.org/10.1016/j.tetlet.2016.04.084

    Article  Google Scholar 

  24. V.N. Charushin, O.N. Chupakhin, Metal-free C-H functionalization of aromatic compounds through the action of nucleophilic reagents. Top. Heterocycl. Chem. 37, 1–50 (2014). https://doi.org/10.1007/7081_2013_119

    Article  Google Scholar 

  25. M. Okamoto, Rheology of polymer/clay nanocomposites: development of mesoscale structure and dynamics of soft glasses. in Nano- and Biocomposites. ed. by A.K.-T. Lau, F. Hussain, K. Lafdi. (CRC Press, Taylor and Francis Group, New York, 2010), p. 71–92

  26. S.V. Paston, V.M. Bakulev, V.N. Demidov, A.I. Nikolayev, N.A. Kasyanenko, Investigation of the interaction of DNA with a new 1,10-phenanthrocyanine zinc complex by spectral methods. News St. Petersburg State Univ. Ser. 4, Phys. Chem. 2(60), 299–304 (2015) (in Russian)

  27. V.N. Demidov, N.A. Kas’yanenko, V.S. Antonov, I.L. Volkov, P.A. Sokolov, T.B. Pakhomova, S.A. Si-manova, Reaction with DNA and pharmacologic activity of 1,10-phenanthroline and electron-rich 1,10-phenanthrocyanine complexes of d-elements. Russ. J. Gen. Chem. 82(3), 602–620 (2012). https://doi.org/10.1134/S1070363212030401

    Article  Google Scholar 

  28. L. Viganor, O. Howe, P. McCarron, M. McCann, M. Devereux, The antibacterial activity of metal complexes containing 1,10-phenanthroline: potential as alternative therapeutics in the era of antibiotic resistance. Curr. Top. Med. Chem. 17(11), 1280–1302 (2017). https://doi.org/10.2174/1568026616666161003143333

    Article  Google Scholar 

  29. A. Kellett, M. O’Connor, M. McCann, O. Howe, A. Casey, P. McCarron, K. Kavanagh, M. McNamara, S. Kennedy, D.D. May, P.S. Skell, D. O’Shea, M. Devereux, Water-soluble bis(1,10-phenanthroline) octanedioate Cu2+ and Mn2+ complexes with unprecedented nano and picomolar in vitro cytotoxicity: promising leads for chemotherapeutic drug development. Med. Chem. Comm. 2(7), 579–584 (2011). https://doi.org/10.1039/C0MD00266F

    Article  Google Scholar 

  30. A.N. Terenin, Photochemical processes in aromatic compounds. J. Phys. Chem. 17(1), 1–12 (1944). ((in Russian))

    Google Scholar 

  31. A.N. Terenin, Selected works. 2, Elementary photo-processes in complex organic molecules, ed. by A.A. Krasnovsky, 32–113 (Science, Leningrad, 1974), p. 474 (in Russian)

  32. A.A. Krasnowsky, A.V. Umrikhina, I.V. Bublitchenko, Free radicals in photochemical reactions of chlorophyll, in Spectroscopy of Phothoconversions in Molecules, ed. A.A. Krasnovsky, 106–127, (Science, Leningrad, 1977) , p. 312 (in Russian)

  33. A.N.Terenin, Selected works. 2, Elementary photo-processes in complex organic molecules, ed. by A.A. Krasnovsky, 360–374, (Science, Leningrag, 1974), p. 474 (in Russian)

  34. A.A. Buglak, A.I. Kononov, Triplet state generation by furocoumarins revisited: a combined QSPR/DFT approach. New J. Chem. 42(17), 14424–14432 (2018). https://doi.org/10.1039/c8nj03002b

    Article  Google Scholar 

  35. Matern. Reactions of azines and their dihydrogen derivatives. The role of electronic transfer in the processes of forming and breaking bonds. Abstr. Dissert. Doctor Chem. Sci. 02.00.03 (Ural State Technical Univer. Ekaterinburg, 2007), p. 47 (in Russian)

  36. N.S. Panina, V.N. Demidov, S.A. Simanova, A DFT study of 2,2’-bi-1,10-phenanthroline and its reduced form as a potential ligand for new tetraaza chromophore complexes. Russ. J. Gen. Chem. 78(5), 913–918 (2008). https://doi.org/10.1134/S1070363208050137

    Article  Google Scholar 

  37. N.S. Panina, V.N. Demidov, S.A. Simanova, A DFT study of transition metal complexes with 1,10-phenanthroline, C-C-dimeric 2,2’-bi-1,10- phenanthroline, and its tetraaza chromophore anion. Russ. J. Gen. Chem. 78(5), 919–924 (2008). https://doi.org/10.1134/S1070363208050149

    Article  Google Scholar 

  38. Hay, W.R. Wadt, Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 82(1), 270–283 (1985). https://doi.org/10.1063/1.448799. https://jcp.aip.org/resource/1/JCPSA6/v82/i1

  39. M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguen, S.J. Su, T.L. Windus, M. Dupius, J.A. Montgomery, General atomic and molecular electronic structure system. J. Comput. Chem. 14(11), 1347–1363 (1993). https://doi.org/10.1002/jcc.540141112

    Article  Google Scholar 

  40. J.G. Dorfman, Diamagnetism and Chemical Bonding (State Publishing House of Phys. and Mathemat. Literat. M, 1961), p. 231 (in Russian)

  41. C.J. Finder, M.G. Newton, N.L. Alliger, An improved structure of trans-stilbene. Acta Cryst. B30, 411–415 (1974). https://doi.org/10.1107/S0567740874002913

    Article  Google Scholar 

  42. H. Mustroph, Apocyanine dyes. Phys. Sci. Rev. 6(6), 175–177 (2021). https://doi.org/10.1515/psr-2020-0147

    Article  Google Scholar 

  43. K. Afarinkia, M.-R. Ansari, C.W. Bird, I. Gyambibi, A reinvestigation of the structure of the erythro- and xanthoapocyanine dyes: some unusual aspects of quinoline chemistry. Tetrahedron Lett. 37(27), 4801–4804 (1996). https://doi.org/10.1016/0040-4039(96)00940-9

    Article  Google Scholar 

  44. F. Kröhnke, H. Dickhäuser, I. Vogt, Zur konstitution der sogenannten xantho-apocyanine. Justus Liebigs Ann. Chem. 644(1), 93–108 (1961). https://doi.org/10.1002/jlac.19616440112

    Article  Google Scholar 

  45. E. Calzavara, The procyanines. I. Diquinolyls and procyanines: the 2,3’-biquinoline-procyanines. Sci. Ind. Phot. 10, 193 (1939)

    Google Scholar 

  46. D. Seebach, Methods of reactivity umpolung. Angew. Chem. Int. Ed. Engl. 18(4), 239–258 (1979). https://doi.org/10.1002/anie.197902393

    Article  Google Scholar 

  47. M.A. Ivanov, Preparation, spectroscopic and electrochemical properties of Au(III), Pt(II) and Pd(II) complexes with heterocyclic chelating and cyclometallated ligands.—Abstr. Dissert. Candid. Chem. Sci., St. Petersburg (2005), p. 19 (in Russian)

  48. K.P. Balashev, E.A. Cerezova, M.A. Ivanov, T.A. Tkacheva, Spectroscopic and electrochemical properties of mixed-ligand cyclopalladinized complexes of deprotonated forms of 2-(2-thienyl)pyridine and 2-phenylpyridine with 1,10-phenanthroline and its 1,4-diazine derivatives. Russ. J. Gen. Chem. 76(7), 1150–1156 (2006). https://doi.org/10.1134/S1070363206070267

    Article  Google Scholar 

  49. A.G. Panova, Mono-, bi- and tetranuclear cyclometallated Pd(II) and Pt(II) complexes with bridged 4,4′-bipyridyl and acetate ligands.—Abstr. Dissert. Candid. Chem. Sci., St. Petersburg (2011), p. 17 (in Russian)

  50. A.G. Panova, K.A. Radyushin, K.P. Balashev, Cyclopalladated complexes based on 2-phenylbenzothiazole and 1,4-(benzothiazol-2-yl)benzene with acetate ligands and ethylenediamine. Russ. J. Gen. Chem. 81(4), 743–746 (2011). https://doi.org/10.1134/S1070363211040219

    Article  Google Scholar 

  51. A.G. Panova, K.P. Balashev, Cyclopalladated complexes of 2-phenylbenzothiazole with 4,4’-bipyridyl. Russ. J. Gen. Chem. 81(4), 747–750 (2011). https://doi.org/10.1134/S1070363211040220

    Article  Google Scholar 

  52. A.I. Rusanov, M.M. Schultz and chemical thermodynamics. News St. Petersburg State Univ. Ser. 4, 1, 149–152 (2010) (in Russian)

  53. A. Toikka, Some formulations of the Le Chatelier-–Brown principle. J. Phys. Chem. 64, 2557–2559 (1990). (in Russian)

    Google Scholar 

  54. D. Gromov, A. Toikka, Toward formal analysis of thermodynamic stability: Le Chatelier-–Brown principle. Entropy 22(1113), 1–16 (2020). https://doi.org/10.3390/e22101113

    Article  MathSciNet  Google Scholar 

  55. A.A. Gukhman, On the Foundations of Thermodynamics (Moscow, LKI Ed., 2019), p. 384 (in Russian) (ISBN 978-5-382-01911-6)

  56. J.E. Wetrz, J.E. Bolton, Electron Spin Resonance. Elementary Theory and Practical Applications (McGray-Hill Book Comp., New York, 1972)

    Google Scholar 

  57. J. Casado, S. Patchkovskii, M.Z. Zgierski, L. Hermosilla, C. Sieiro, M.M. Oliva, J.T.L. Navarrete, Raman detection of “ambiguous” conjugated biradicals: rapid thermal singlet-to-triplet intersystem crossing in an extended viologen. Angew. Chem. Int. Ed. 47(8), 1443–1446 (2008). https://doi.org/10.1002/anie.200704398

    Article  Google Scholar 

  58. X. Yin, J.Z. Low, K.J. Fallon, D.W. Paleyb, L.M. Campos, The butterfly effect in bisfluorenylidene-based dihydroacenes: aggregation induced emission and spin switching. Chem. Sci. 10, 10733–10739 (2019). https://doi.org/10.1039/c9sc04096j

    Article  Google Scholar 

  59. A. Minsky, A.Y. Meyer, R. Poupko, M. Rabinovitz, Paramagnetism and antiaromaticity: singlet-triplet equilibrium in doubly charged benzenoid polycyclic systems. J. Amer. Chem. Soc. 105, 2164–2172 (1983)

    Article  Google Scholar 

  60. M.I. Valitov, G.M. Fazleeva, M.K. Kadirov, E.S. Nefediev, EPR of organic and fullerene cluster biradicals based on 2,2,6,6-tetramethyl-4-oxopiperidine-1-oxyl. Bull. Kazan Technol. Univ. 15(16), 16–18 (2012) (in Russian)

  61. M.K. Kadirov, E.V. Tretyakov, K.V. Kholin, E.S. Nefediev, V.I. Ovcharenko, O.G. Sinyashin, Exchange interactions in multi-spin systems based on nitronyl nitroxyl radicals. Bull. Kazan Technol. Univ. 4, 36–40 (2011). (in Russian)

    Google Scholar 

  62. Y. Su, X. Wang, L. Wang, Z. Zhang, X. Wang, Y. Song, P.P. Power, Thermally controlling the singlet–triplet energy gap of a diradical in the solid state. Chem. Sci. 7, 6514–6518 (2016). https://doi.org/10.1039/c6sc01825d

    Article  Google Scholar 

  63. S. Fukuzumi, K. Ohkubo, M. Ishida, C. Preihs, B. Chen, W.T. Borden, D. Kim, J.L. Sessler, Formation of ground state triplet diradicals from annulated rosarin derivatives by triprotonation. J. Am. Chem. Soc. 137(31), 9780–9783 (2015). https://doi.org/10.1021/jacs.5b05309

    Article  Google Scholar 

  64. L. Wang, Y. Fang, H. Mao, Y. Qu, J. Zuo, Z. Zhang, G. Tan, X. Wang, An Isolable diboron-centered diradical with a triplet ground state. https://doi.org/10.1002/chem.201701308

  65. JPh. Grivet, ESR of acridine in its metastable triplet state. Chem. Phys. Lett. 11(3), 267–270 (1971). https://doi.org/10.1016/0009-2614(71)80480-3

    Article  ADS  Google Scholar 

  66. H. Schmidt, ESR Triplet exciton spectrum of acridine orange. Z. Naturforsch. A. 26, 763–768 (1971). https://doi.org/10.1515/zna-1971-0422

    Article  ADS  Google Scholar 

  67. Y. Kubota, M. Miura, The excited states of acridine dyes. I. An ESR study of the triplet state. Bull. Chem. Soc. Japan 42, 2763–2767 (1969)

    Article  Google Scholar 

  68. C. Zhang, Y. Zhang, K. Fan, Q. Zou, Y. Chen, Y. Wu, S. Bao, L. Zheng, J. Ma, C. Wang, Diradicals or zwitterions: the chemical states of m-benzoquinone and structural variation after storage of Li ions. CCS Chem. 3, 2812–2825 (2021). https://doi.org/10.31635/ccschem.021.202101333

  69. T.-G. Zhan, T.-Y. Zhou, F. Lin, L. Zhang, C. Zhou, Q.-Y. Qi, Z.-T. Li, X. Zhao, Supramolecular radical polymers self-assembled from the stacking of radical cations of rod-like viologen di- and trimers. Org. Chem. Front. 3, 1635–1645 (2016). https://doi.org/10.1039/c6qo00298f

    Article  Google Scholar 

  70. H. Yi, A. Jutand, A. Lei, Evidence for the interaction between tBuOK and 1,10-phenanthroline to form the 1,10-phenanthroline radical anion: a key step for the activation of aryl bromides by electron transfer. Chem. Commun. 51(3), 545–548 (2015). https://doi.org/10.1039/C4CC07299E

    Article  Google Scholar 

  71. A. Kostenko, B. Tumanskii, M. Karni, S. Inoue, M. Ichinohe, A. Sekiguchi, Y. Apeloig, Observation of a thermally accessible triplet state resulting from rotation around a main-group π bond. Angew. Chem. Int. Ed. 54, 12144–12148 (2015). https://doi.org/10.1002/anie.201506291

    Article  Google Scholar 

  72. Yu.V. Krasnikova, Experimental study of spin dynamics of “spin ladder” type magnets, Diss. Cand. Phys.-Math. Sci., Moscow (2020) (in Russian)

  73. D.B. Chesnut, W.D. Phillips, EPR Studies of spin correlation in some ion radical salts. J. Chem. Phys. 35(3), 1002–1012 (1961)

    Article  ADS  Google Scholar 

  74. R.P. Sartoris, V.T. Santana, E. Freire, R.F. Baggio, O.R. Nascimento, R. Calvo, Exchange couplings and quantum phases in two dissimilar arrays of similar copper dinuclear units. Dalton Trans. 49, 5228–5240 (2020). https://doi.org/10.1039/d0dt00567c

    Article  Google Scholar 

  75. J.A. Weil, J. Bolton, Electron paramagnetic resonance, 2nd edn. (Wiley, Hoboken, 2007)

    Google Scholar 

  76. B. Bleaney, K.D. Bowers, Anomalous paramagnetism of copper acetate. Proc. R. Soc. Lond. Ser. A. 214, 451–465 (1952). https://doi.org/10.1098/rspa.1952.0181

    Article  ADS  Google Scholar 

  77. K.K. Kalninsh, Hydrogen transfer in organic chemistry (St Petersburg, IPC StPtSUTD, 2012), p.417. (in Russian)

    Google Scholar 

  78. Berlin Alfred Anisimovitch, Selected works. Memoirs of contemporaries, ed. by a corresponding member. RAS Al. Al. Berlin, M., Science (2002), p. 362 (in Russian)

  79. A.M. Timonov, S.V. Vasilyeva, Electronic conductivity of polymer compounds. Soros. Educ. J. 6(3), 33–39 (2000). (in Russian)

    Google Scholar 

  80. L.A. Blumenfeld, A.A. Berlin, N.G. Matveeva, A.E. Kalmanson, Polymers with conjugated bonds in chains of macromolecules. IV. On some features of polymer compounds containing heteroatoms and conjugation chains. Macromol. Comp. 1(11), 1647–1651 (1959). (in Russian)

    Google Scholar 

  81. G.A. Lapitsky, S.M. Makin, A.A. Berlin, On the nature of the EPR signal in polymers with a system of conjugated bonds. Macromol. Comp. 10(9), 712–714 (1968). (in Russian)

    Google Scholar 

  82. A.A. Berlin, Features of properties of polyconjoint systems and their application for stabilization and modification of high polymers. Macromol. Comp. 13(2), 276–293 (1971). (in Russian)

    Google Scholar 

  83. A.A. Berlin, G.A. Vinogradov, Yu.A. Berlin, Intermolecular interactions and paramagnetism of polymers with conjugation system. Macromol. Comp. (A) 22(4), 862–867 (1980). (in Russian)

    Google Scholar 

  84. S.К. Lower, Μ.Α. Ε1-Sayed, The triplet state and molecular electronic processes in organic molecules. Adv. Phys. Sci. 94(2), 289–351 (1968) (in Russian) (Chem. Rev. 66, 199 (1966))

  85. A. Seeboth, D. Lötzsch, Thermochromic and Thermotropic Materials (Taylor & Francis Group, LLC, New York, 2013), p. 208. https://doi.org/10.1201/b16299

  86. E.G. Rozantsev, Free iminoxyl radicals (1970), p. 216 (in Russian)

  87. I.B. Klenina, Z.K. Makhneva, A.A. Moskalenko, A.N. Kuzmin, I.I. Proskuryakov, Singlet-triplet division of excitation in light-collecting complexes of purple photosynthetic bacteria and in isolated carotenoids. Biophys. 58(1), 54–63 (2013) (in Russian) (Biophysics 58(1), 43–50 (2013))

  88. I.B. Klenina, Z.K. Makhneva, A.A. Moskalenko, N.D. Gudkov, M.A. Bolshakov, E.A. Pavlova, I.I. Proskuryakov, Singlet-triplet division of excitation of carotenoids of light-collecting complexes of LH2 purple phototrophic bacteria. Biochemistry 79(3), 310–317 (2014). (in Russian)

    Google Scholar 

  89. S. Hammes-Schiffer, A.A. Stuchebrukhov, Theory of coupled electron and proton transfer reactions. Chem. Rev. 110(12), 6939–6960 (2010). https://doi.org/10.1021/cr1001436

    Article  Google Scholar 

  90. J.J. Warren, T.A. Tronic, J.M. Mayer, Thermochemistry of proton-coupled electron transfer reagents and its implications. Chem. Rev. 110(12), 6961–7001 (2010). https://doi.org/10.1021/cr100085k

    Article  Google Scholar 

  91. R.I. Cukier, Theory and simulation of proton-coupled electron transfer, hydrogen-atom transfer, and proton translocation in proteins. Biochim. Biophys. Acta 1655, 37–44 (2004). https://doi.org/10.1016/j.bbabio.2003.06.011

    Article  Google Scholar 

  92. J.M. Mayer, I.J. Rhile, Thermodynamics and kinetics of proton-coupled electron transfer: stepwise vs. concerted pathways. Biochim. Biophys. Acta 1655, 51–58 (2004). https://doi.org/10.1016/j.bbabio.2003.07.002

    Article  Google Scholar 

  93. M. Yagi, T. Kaneshima, M. Torii, K. Matsuo, J. Higuchi, Effects of counterion on the triplet states of zinc(II) complexes with 1,10-phenanthroline and 2,9-dimethyl-1,10-phenanthroline. Chem. Phys. Lett. 197(4–5), 457–460 (1992). https://doi.org/10.1016/0009-2614(92)85800-P

    Article  ADS  Google Scholar 

  94. H. Fujita, S. Kako, H. Ohya-Nishiguchi, Y. Deguchi, Triplet state ESR of 1,10-phenanthroline and 2,9-dimethyl-1,10-phenanthroline metal chelates. Chem. Lett. 3(2), 131–132 (1974)

    Article  Google Scholar 

  95. S. Valente, P. Mellini, F. Spallotta, V. Carafa, A. Nebbioso, L. Polletta, I. Carnevale, S. Saladini, D. Trisciuoglio, C. Gabellini, M. Tardugno, C. Zwergel, C. Cencioni, S. Atlante, S. Moniot, C. Steegborn, R. Budriesi, M. Tafani, D. Del Bufalo, L. Altucci, C. Gaetano, A. Mai, 1,4-Dihydropyridines active on the SIRT1/AMPK pathway ameliorate skin repair and mitochondrial function, and exhibit inhibition of proliferation in cancer cells. J. Med. Chem. 59(4), 1471–1491 (2016). https://doi.org/10.1021/acs.jmedchem.5b01117

    Article  Google Scholar 

  96. D. Viradiya, S. Mirza, F. Shaikh, R. Kakadiya, A. Rathod, N. Jain, R. Rawal, A. Shah, Design and synthesis of 1,4-dihydropyridine derivatives as anticancer agent. Anticancer Agents Med. Chem. 17(7), 1003–1013 (2017). https://doi.org/10.2174/1871520616666161206143251

    Article  Google Scholar 

  97. T. Mosmann, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods. 65(1–2), 55–63 (1983). https://doi.org/10.1016/0022-1759(83)90303-4

    Article  Google Scholar 

  98. J.K. Barton, J.J. Dannenberg, A.L. Raphael, Enantiomeric selectivity in binding tris(phenanthroline) zinc(II) to DNA. J. Am. Chem. Soc. 104(18), 4967–4969 (1982). https://doi.org/10.1021/ja00382a048

    Article  Google Scholar 

  99. E.V. Akulenkova, V.N. Demidov, A.O. Martynova, S.V. Paston, The interaction of DNA with phenanthroline and new phenanthrocyanine complexes of Zn(II). Biophysics 66(1), 17–24 (2021). https://doi.org/10.1134/S0006350921010048

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Doctor of Biological Sciences V.V. Sharoiko (Laboratory of Biomedical Chemistry, Institute of Chemistry, St. Petersburg State University, Universitetsky pr., 26, 198504, Peterhof, and Department of General and Bioorganic Chemistry, Pavlov First Saint Petersburg State Medical University, L’va Tolstogo str., 6–8, 197022, Saint Petersburg, Russia) for the study of cytotoxicity activity of Zn(II) complexes.

Funding

The work was carried out at the ISC RAS within the framework of the theme of the state budget: “Physico-chemical bases of inorganic synthesis of micro- and nanostructured non-organic, organo-non-organic and ceramic materials and coatings for bio-, energy- and resource-saving technologies” (1021050501070-0-1.4.3, No. 0097-2022-0006); as well as by V.L. Komarov Botanical Institute of the Russian Academy of Sciences, state budget theme: 122011900033-4, “Biodiversity, ecology and structural and functional features of fungi and fungi-like protists”.

Author information

Authors and Affiliations

Authors

Contributions

VND wrote a manuscript, synthesized compounds, participated in the formulation of the concept (while performing the main role), participated in the measurement of ESR spectra, SMS measured ESR spectra, TBP participated in the synthesis of compounds and depicted structural formulas, AGI participated in the formulation of the concept, SVP investigated the interaction of complexes with DNA, EVB investigated the fungistatic activity of complexes.

Corresponding author

Correspondence to Viktor N. Demidov.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demidov, V.N., Sukharzhevsky, S.M., Pakhomova, T.B. et al. Investigation by ESR Spectroscopy of Biology Active Electron-Rich 1,10-Phenanthrocyanines of d-Elements (Soft Colloidal Glasses). Appl Magn Reson 54, 1015–1051 (2023). https://doi.org/10.1007/s00723-023-01586-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-023-01586-z

Navigation