Skip to main content
Log in

Morphology of Industrially Relevant Polymers by 1H NMR Spin-Diffusion

  • Review
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Applications of time-domain 1H NMR spin-diffusion experiments for studying morphology of industrially relevant polymers are reviewed. The method exploits the contrast in molecular mobility in different phases in multi-phase organic materials, which could be in some cases advantageous to traditional morphological methods. A brief overview of different time-domain spin-diffusion methods and data analysis is provided. The effect of domain size distributions and their clustering, which were previously analyzed by numerical simulations of spin-diffusion curves, is discussed. Examples of different types of morphology in polymers with hard and soft domains are presented, namely, lamellar morphology and its changes during annealing; interfacial layers in different types of polymers; fragmented structure of crystal lamellae in isotactic polybutene-1 and its copolymer with form I crystals; fibrillar morphology of melt-spun Nylon 6 and poly(ethylene terephthalate) fibers; morphology of gel-spun ultra-high-molecular-weight polyethylene fibers; ionic clusters in polymeric ionomers; the rubber–filler interface in filled rubbers; the structure of network of physical junctions in filled rubbers and ionomers; and morphology of thermoplastic polyurethanes. Domain sizes from the NMR method are compared with those determined for the same materials by small-angle X-ray scattering and transmission electron microscopy. All results are in good agreement. In addition to domain sizes, the NMR method provides several details of polymer morphology, namely, morphological heterogeneities, the type and the thickness of interfacial layers, the presence of (sub)nano-domains, and molecular mobility in different phases. Thus, the method offers information that is complementary to the conventional methods. The effect of structural heterogeneities on macroscopic properties is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12.
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Availability of Data and Materials

The review provides an overview of published studies and does not present any original unpublished data and materials. Data and materials should be requested from authors of cited papers.

References

  1. Q. Guo. Polymer morphology: principles, characterization, and processing. (Wiley & Sons Ltd, 2016). (ISBN: 978-1-118-45215-8)

  2. V.M. Litvinov, V.B.F. Mathot, Partitioning of main and side-chain units between different phases: a solid-state 13C NMR inversion-recovery cross-polarization study on a homogeneous, metallocene-based, ethylene-1-octene copolymer. Solid State Nucl. Magn. Res. 22, 218–234 (2002). https://doi.org/10.1006/snmr.2002.0078

    Article  Google Scholar 

  3. D.R. Salem, Structure formation in polymeric fibers (Hanser Publishers, Munich, 2000). (ISBN: 978-3-446-18203-5)

    Google Scholar 

  4. N. Hadjichristidis, S. Pispas, G. Floudas. Block Copolymers Morphology. in: Block Copolymers: Synthetic Strategies, Physical Properties, and Applications. (John Wiley & Sons, Inc, Hoboken, NJ, 2003), pp. 346–361. https://doi.org/10.1002/0471269808.ch19

  5. L.C. Sawyer, D.T. Grubb, Polymer microscopy (Springer, Dordrecht, 1996). (ISBN: 978-94-015-8595-8)

    Book  Google Scholar 

  6. A.R. Clarke, C.N. Eberhardt, Microscopy techniques for material science (Woodhead Publishing Ltd, Cambridge, 2002). (ISBN 978-1-85573-587-3)

    Book  Google Scholar 

  7. M.R. Libera, R.F. Egerton, Advances in the transmission electron microscopy of polymers. Polym. Rev. 50, 321–339 (2010). https://doi.org/10.1080/15583724.2010.493256

    Article  Google Scholar 

  8. B. Crista, J. M. Schultz. Atomic force microscopy studies of polymer crystals: Nucleation, growth, annealing, and melting. in: Encyclopedia of Polymers and Composites. (Springer-Verlag, Berlin, Heidelberg, 2013) pp. 1–25. https://doi.org/10.1007/978-3-642-37179-0_23-1

  9. D.V. Chapman, H. Du, W.Y. Lee, U.B. Wiesner, Optical super-resolution microscopy in polymer science. Progr. Polym. Sci. 111, 101312 (2020). https://doi.org/10.1016/j.progpolymsci.2020.101312

    Article  Google Scholar 

  10. J. Alvarez, G. Saudino, V. Musteata, P. Madhavan, S.P. Nunes, G. Saudino, C. Boi, A. Genovese, A. Reza Behzad, R. Sougrat, K.-V. Peinemann, 3D analysis of ordered porous polymeric particles using complementary electron microscopy methods. Sci. Rep. 9, 13987 (2019). https://doi.org/10.1038/s41598-019-50338-2

    Article  ADS  Google Scholar 

  11. R.-J. Roe, Methods of X-ray and neutron scattering in polymer science (Oxford University Press, New York, 2000). (ISBN 0-19-511321-7)

    Google Scholar 

  12. N. Stribeck, X-ray scattering of soft matter. (Springer, Berlin, Heidelberg, 2007). ISBN: 978-3-540-69856-*2

  13. A. Seidlitz, T. Thurn-Albrecht. (2016). Small-angle X-ray scattering for morphological analysis of semicrystalline polymers. in Polymer Morphology: Principles, Characterization, and Processing, ed. By Q. Guo. (John Wiley & Sons, Inc., 2016), pp. 151–164. https://doi.org/10.1002/9781118892756.ch9

  14. C. A. Avila-Orta, F. J. Medellin-Rodrigue, Small-angle X-ray scattering of polymer systems. in Polymer Morphology: Principles, Characterization, and Processing, ed. By Q. Guo. (John Wiley & Sons, Inc., 2016), pp. 391–407. https://doi.org/10.1002/9781118480793.ch19

  15. D. Balzar, N. Audebrand, M. Daymond, A. Fitch, A. Hewat, J. I. Langford, A. Le Bail, D. Louër, O. Masson, C. N. McCowan, N. C. Popa, P. W. Stephens, B. Toby. Size-strain line-broadening analysis of the ceria round-robin sample. J. Appl. Crystallography 37, 911–924 (2004). https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=851306

  16. V.J. McBrierty, K.J. Packer, Nuclear magnetic resonance in solid polymers (Cambridge University Press, Cambridge, 1993). (ISBN: 9780511525278)

    Book  Google Scholar 

  17. K. Schmidt-Rohr, H.W. Spiess, Multidimensional solid-state NMR and polymers (Academic Press, London, 1994). (ISBN: 9780080925622)

    Google Scholar 

  18. R. A. Larsen. Raman spectroscopy of polymers. in Applied Polymer Science: 21st Century, ed. By C. D. Craver, C. E. Carraher, Jr. (Elsevier, 2000), pp. 759–785. https://doi.org/10.1016/B978-008043417-9/50038-6

  19. J.L. Koenig, J.P. Bobiak, Raman and infrared imaging of dynamic polymer systems. Macromol. Mater. Engineering 292, 801–816 (2007). https://doi.org/10.1002/mame.20070001

    Article  Google Scholar 

  20. P. Blümler, S. Hafner. Nuclear magnetic resonance, Imaging of polymers. in Encyclopedia of Analytical Chemistry. ed. By R. A. Meyers. (John Wiley & Sons, Ltd., 2009). https://doi.org/10.1002/9780470027318.a2023.pub2

  21. P. Adriaensens, A. Pollaris, R. Rulkens, V.M. Litvinov, J. Gelan, Study of water uptake in polyamide 46 copolymers by magnetic resonance imaging relaxometry. Polymer 45, 2465–2473 (2004). https://doi.org/10.1016/j.polymer.2004.02.007

    Article  Google Scholar 

  22. P. Adriaensens, L. Storme, R. Carleer, J. D’Haen, J. Gelan, V.M. Litvinov, R. Marissen, J. Crevecoeur, NMR imaging study of stress-induced material response in rubber modified polyamide 6. Macromolecules 35, 135–140 (2002). https://doi.org/10.1021/ma0113273

    Article  ADS  Google Scholar 

  23. S. N. Magonov. Atomic Force Microscopy in Analysis of Polymers. in Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation. ed. By R. A. Meyers. (John Wiley & Sons, Ltd., 2009). https://doi.org/10.1002/9780470027318.a2003

  24. J. Clauss, K. Schmidt-Rohr, H.W. Spiess, Determination of domain sizes in heterogeneous polymers by solid-state NMR. Acta Polym. 44, 1–17 (1993). https://doi.org/10.1002/actp.1993.010440101

    Article  Google Scholar 

  25. D.E. Demco, A. Johansson, J. Tegenfeldt, Proton spin diffusion for spatial heterogeneity and morphology investigations of polymers. Solid State Nucl. Magn. Res. 4, 13–38 (1995). https://doi.org/10.1016/0926-2040(94)00036-C

    Article  Google Scholar 

  26. K. Landfester, H.W. Spiess, Characterization of interphases in core–shell latexes by solid-state NMR. Acta Polym. 49, 451–464 (1998). https://doi.org/10.1002/(SICI)1521-4044(199809)49:9%3C451::AID-APOL451%3E3.0.CO;2-U

    Article  Google Scholar 

  27. H. Schneider, K. Saalwachter, M. Roos, Complex morphology of the intermediate phase in block copolymers and semicrystalline polymers as revealed by 1H NMR spin diffusion experiments. Macromolecules 50, 8598–8610 (2017). https://doi.org/10.1021/acs.macromol.7b00703

    Article  ADS  Google Scholar 

  28. A. Buda, D.E. Demco, M. Bertmer, B. Blümich, V.M. Litvinov, J.P. Penning, Complex morphology of melt-spun Nylon 6 fibers investigated by 1H double-quantum-filtered NMR spin-diffusion. ChemPhysChem 5, 876–883 (2004). https://doi.org/10.1002/cphc.200301071

    Article  Google Scholar 

  29. M. Munowitz, A. Pines, Principles and applications of multiple-quantum NMR. Adv. Chem. Phys. 66, 1–152 (1986). https://doi.org/10.1002/9780470142929.ch1

    Article  Google Scholar 

  30. R.R. Ernst, G. Bodenhausen, A. Wokaun, Principles of nuclear magnetic resonance in one and two dimensions (Clarendon Press, Oxford, 1987). (ISBN: 9780198556473)

    Google Scholar 

  31. M. Goldman, L. Shen, Spin-spin relaxation in LaF3. Phys. Rev. 144, 321–331 (1966). https://doi.org/10.1103/PhysRev.144.321

    Article  ADS  Google Scholar 

  32. A. Buda, D.E. Demco, M. Bertmer, B. Blümich, V.M. Litvinov, J.P. Penning, General analytical description of spin-diffusion for a three-domain morphology. Application to melt-spun Nylon 6 fibers. J. Phys. Chem. B 107, 5357–5370 (2003). https://doi.org/10.1021/jp021684v

    Article  Google Scholar 

  33. V.M. Litvinov, EPDM/PP thermoplastic vulcanizates as studied by proton NMR relaxation: phase composition, molecular mobility, network structure in the rubbery phase, and network heterogeneity. Macromolecules 39, 8727–8741 (2006). https://doi.org/10.1021/ma061911h

    Article  ADS  Google Scholar 

  34. Y. Qin, V. Litvinov, W. Chassé, B. Zhang, Y. Men, Change of lamellar morphology upon polymorphic transition of form II to form I crystals in isotactic polybutene-1 and its copolymer. Polymer 215, 123355 (2021). https://doi.org/10.1016/j.polymer.2020.123355

    Article  Google Scholar 

  35. F. Mellinger, M. Wilhelm, H.W. Spiess, R. Baumstark, A. Haunschild, Quantitative measurement of core coverage in core-shell particles by solid-state 1H NMR spin-diffusion experiments. Macromol. Chem. Phys. 200, 719–730 (1999). https://doi.org/10.1002/(SICI)1521-3935(19990401)200:4%3c719::AID-MACP719%3e3.0.CO;2-N

    Article  Google Scholar 

  36. V.M. Litvinov, A.W.M. Braam, A.F.M.J. van der Ploeg, Telechelic ionomers: Molecular structure and kinetics of physical gelation of unsaturated polyester as studied by solid state NMR and X-ray. Macromolecules 34, 489–502 (2001). https://doi.org/10.1021/ma001478q

    Article  ADS  Google Scholar 

  37. Z. Lili, Q. Chen, E.W. Hansen, Morphology and phase characteristics of high-density polyethylene probed by NMR spin diffusion and second moment analysis. Macromol. Chem. Phys. 206, 246–257 (2005). https://doi.org/10.1002/macp.200400343

    Article  Google Scholar 

  38. C. Hedesiu, D.E. Demco, R. Kleppinger, G. Vanden Poel, W. Gijsbers, B. Blümich, K. Remerie, V.M. Litvinov, Effect of temperature and annealing on the phase composition, molecular mobility, and the thickness of domains in isotactic polypropylene studied by proton solid-state NMR, SAXS, and DSC. Macromolecules 40, 3977–3989 (2007). https://doi.org/10.1021/ma070014q

    Article  ADS  Google Scholar 

  39. M. Mauri, Y. Thomann, H. Schneider, K. Saalwächter, Spin-diffusion NMR at low field for the study of multiphase solids. Solid State Nucl. Magn. Res. 34, 125–141 (2008). https://doi.org/10.1016/j.ssnmr.2008.07.001

    Article  Google Scholar 

  40. F. Mellinger, M. Wilhelm, H.W. Spiess, Calibration of 1H NMR spin diffusion coefficients for mobile polymers through transverse relaxation measurements. Macromolecules 32, 4686–4691 (1999). https://doi.org/10.1021/ma9820265

    Article  ADS  Google Scholar 

  41. C. Hedesiu, R. Kleppinger, D.E. Demco, A. Buda, B. Blümich, K. Remerie, V.M. Litvinov, The effect of temperature and annealing on the phase composition, molecular mobility and the thickness of domains in high-density polyethylene. Polymer 48, 763–777 (2007). https://doi.org/10.1016/j.polymer.2006.12.019

    Article  Google Scholar 

  42. W. Derbyshire, M. van den Bosch, D. van Dusschoten, W. MacNaughtan, I.A. Farhat, M.A. Hemminga, J.R. Mitchell, Fitting of the beat pattern observed in NMR free-induction decay signals of concentrated carbohydrate-water solutions. J. Magn. Reson. 168, 278–283 (2004). https://doi.org/10.1016/j.jmr.2004.03.013

    Article  ADS  Google Scholar 

  43. K. Schäler, M. Roos, P. Micke, Y. Golitsyn, A. Seidlitz, T. Thurn-Albrecht, H. Schneider, G. Hempel, K. Saalwächter, Basic principles of static proton low-resolution spin diffusion NMR in nanophase-separated materials with mobility contrast. Solid State Nucl. Magn. Res. 72, 50–63 (2015). https://doi.org/10.1016/j.ssnmr.2015.09.001

    Article  Google Scholar 

  44. X. Jia, J. Wolak, X. Wang, J.L. White, Independent calibration of 1H spin-diffusion coefficients in amorphous polymers by intramolecular polarization transfer. Macromolecules 36, 712–718 (2003). https://doi.org/10.1021/ma0215316

    Article  ADS  Google Scholar 

  45. M.E. Halse, A. Zagdoun, J.-N. Dumez, L. Emsley, Macroscopic nuclear spin diffusion constants of rotating polycrystalline solids from first-principles simulation. J. Magn. Reson. 254, 48–55 (2015). https://doi.org/10.1016/j.jmr.2015.02.016

    Article  ADS  Google Scholar 

  46. M.A. Voda, D.E. Demco, A. Voda, T. Schauber, M. Adler, T. Dabisch, A. Adams, M. Baias, B. Blümich, Morphology of thermoplastic polyurethanes by 1H spin-diffusion NMR. Macromolecules 39(14), 4802–4810 (2006). https://doi.org/10.1021/ma060335m

    Article  ADS  Google Scholar 

  47. C. Melian, D.E. Demco, M. Istrate, A. Balaceanu, D. Moldovan, R. Fechete, C. Popescu, M. Möller, Morphology and side-chain dynamics in hydrated hard α-keratin fibers by 1H solid-state NMR. Chem. Phys. Lett. 480, 300–304 (2009). https://doi.org/10.1016/j.cplett.2009.09.013

    Article  ADS  Google Scholar 

  48. D.L. VanderHart, G.B. McFadden, Some perspectives on the interpretation of proton NMR spin diffusion data in terms of polymer morphologies. Solid State Nucl. Magn. Res. 7, 45–66 (1996). https://doi.org/10.1016/0926-2040(96)01233-7

    Article  Google Scholar 

  49. T.T.P. Cheung, Effects of disorder in polymer morphology on spin diffusion. J. Phys. Chem. B 103, 9423–9431 (1999). https://doi.org/10.1021/jp9906684

    Article  Google Scholar 

  50. E.G. Sorte, A.L. Frischknecht, T.M. Alam, NMR spin diffusion measurements in disordered polymers: insights and limitations. Phys. Rev. Mater. 3, 045602 (2019). https://doi.org/10.1103/PhysRevMaterials.3.045602

    Article  Google Scholar 

  51. M. Roos, K. Schäler, A. Seidlitz, T. Thurn-Albrecht, K. Saalwächter, NMR study of interphase structure in layered polymer morphologies with mobility contrast: disorder and confinement effects vs. dynamic heterogeneities. Coll. Polym. Sci. 292, 1825–1839 (2014). https://doi.org/10.1007/s00396-014-3218-8

    Article  Google Scholar 

  52. H. Schneider, M. Roos, Y. Golitsyn, K. Steiner, K. Saalwächter, Dynamic heterogeneity of filler-associated interphases in polymer nanocomposites. Macromol. Rapid Com. 42, 2100061 (2021). https://doi.org/10.1002/marc.202100061

    Article  Google Scholar 

  53. V.M. Litvinov, B.D. Lavrukhin, A.A. Zhdanov, K.A. Andrianov, The effect of spin diffusion on the longitudinal nuclear magnetic relaxation for semicrystalline poly(dimethylsiloxane). Polym. Sci. USSR 20, 2758–2768 (1978). https://doi.org/10.1016/0032-3950(78)90457-4

    Article  Google Scholar 

  54. A.M. Kenwright, K.J. Packer, B.J. Say, Numerical simulations of the effects of spin-diffusion on NMR spin-lattice relaxation in semicrystalline polymers. J. Magn. Res. 69, 426–439 (1986). https://doi.org/10.1016/0022-2364(86)90155-1

    Article  ADS  Google Scholar 

  55. S. Zhang, M. Mehring, A modified Goldman-Shen NMR pulse sequence. Chem. Phys. Lett. 160, 644–646 (1989). https://doi.org/10.1016/0009-2614(89)80079-X

    Article  ADS  Google Scholar 

  56. A.M. Kenwright, B.J. Say, Analysis of spin-diffusion measurements by iterative optimization of numerical models. Solid State Nucl. Magn. Res. 7, 85–93 (1996). https://doi.org/10.1016/S0926-2040(96)01251-9

    Article  Google Scholar 

  57. V.M. Litvinov, Diffusivity of water molecules in amorphous phase of Nylon 6 fibers. Macromolecules 48, 4748–4753 (2015). https://doi.org/10.1021/acs.macromol.5b00570

    Article  ADS  Google Scholar 

  58. V. M. Litvinov. Molecular mobility and phase composition in polyolefins: from fundamental to applied research, in NMR Spectroscopy of Polymers: Innovative Strategies for Complex Macromolecules, ACS Symposium Series, Vol. 1077, ed. By H. N. Cheng, T. Asakura, A. D. English, ACS Symp. Series, (ACS, Washington, DC, 2011, ISBN 9780841226678, pp. 179–190. https://doi.org/10.1021/bk-2011-1077.ch011

  59. V. Litvinov, Y. Men, Time-domain NMR in polyolefin research. Polymer 256, 125205 (2022). https://doi.org/10.1016/j.polymer.2022.125205

    Article  Google Scholar 

  60. C. Hedesiu, D.E. Demco, R. Kleppinger, G. Vanden Poel, K. Remerie, V.M. Litvinov, B. Blümich, R. Steenbakkers, Aging effects on the phase composition and chain mobility in isotactic poly(propylene). Macromol. Mater. Eng. 293, 847–857 (2008). https://doi.org/10.1002/mame.200800140

    Article  Google Scholar 

  61. V.M. Litvinov, J.P. Penning, Phase composition and molecular mobility in Nylon 6 fibers as studied by proton NMR transverse magnetisation relaxation. Macromol. Chem. Phys. 205, 1721–1734 (2004). https://doi.org/10.1002/macp.200400089

    Article  Google Scholar 

  62. R.R. Eckman, P.M. Henrichs, A.J. Peacock, Study of polyethylene by solid state NMR relaxation and spin diffusion. Macromolecules 30, 2474–2481 (1997). https://doi.org/10.1021/ma9516753

    Article  ADS  Google Scholar 

  63. S. Gautman, S. Balijepalli, G.C. Rutledge, Molecular simulations of the interlamellar phase in polymers: effect of chain tilt. Macromolecules 33, 9136–9145 (2000). https://doi.org/10.1021/ma0012503

    Article  ADS  Google Scholar 

  64. K. Tashiro, J. Hu, H. Wang, M. Hanesaka, A. Saiani, Refinement of the crystal structures of forms I and II of isotactic polybutene-1 and a proposal of phase transition mechanism between them. Macromolecules 49, 1392–1404 (2016). https://doi.org/10.1021/acs.macromol.5b02785

    Article  ADS  Google Scholar 

  65. W.-G. Hu, K. Schmidt-Rohr, Polymer ultradrawability: the crucial role of a-relaxation chain mobility in the crystallites. Acta Polym. 50, 271–285 (1999). https://doi.org/10.1002/(SICI)1521-4044(19990801)50:8%3C271::AID-APOL271%3E3.0.CO;2-Y

    Article  Google Scholar 

  66. K. Schmidt-Rohr, H.W. Spiess, Chain diffusion between crystalline and amorphous regions in polyethylene detected by 2D exchange carbon-13 NMR. Macromolecules 24, 5288–5293 (1991). https://doi.org/10.1021/ma00019a011

    Article  ADS  Google Scholar 

  67. D. Schaefer, H.W. Spiess, U.W. Suter, W.W. Fleming, Two-dimensional solid-state NMR studies of ultraslow chain motion: glass Transition in atactic poly(propy1ene) versus helical jumps in isotactic poly(propy1ene). Macromolecules 23, 3431–3439 (1990). https://doi.org/10.1021/ma00216a008

    Article  ADS  Google Scholar 

  68. T. Miyoshi, A. Mamum, D. Reichert, Fast dynamics and conformations of polymer in a conformational disordered crystal characterized by 1H–13C WISE NMR. Macromolecules 43, 3986–3989 (2010). https://doi.org/10.1021/ma901927m

    Article  ADS  Google Scholar 

  69. M. Schulz, A. Seidlitz, R. Kurz, R. Barenwald, A. Petzold, K. Saalwächter, T. Thurn-Albrecht, The underestimated effect of intracrystalline chain dynamics on the morphology and stability of semicrystalline polymers. Macromolecules 51, 8377–8385 (2018). https://doi.org/10.1021/acs.macromol.8b01102

    Article  ADS  Google Scholar 

  70. V. Litvinov, R. Deblieck, C. Clair, W. Van den Fonteyne, A. Lallam, R. Kleppinger, D.A. Ivanov, M.E. Ries, M. Boerakker, Molecular structure, phase composition, melting behavior and chain entanglements in the amorphous phase of high-density polyethylenes. Macromolecules 53, 5418–54133 (2020). https://doi.org/10.1021/acs.macromol.0c00956

    Article  ADS  Google Scholar 

  71. I.C. Sanchez, J.P. Colson, R.K. Egy, Theory and observations of polymer crystal thickening. J. Appl. Phys. 44, 4332–4339 (1973). https://doi.org/10.1063/1.1661961

    Article  ADS  Google Scholar 

  72. D.E. Demco, V.M. Litvinov, G. Rata, C. Popescu, K.-H. Plan, A. Schmidt, B. Blümich, Investigation of thermal aging of polyamide 4,6 by 1H solid-state NMR. Macromol. Chem. Phys. 208, 2085–2095 (2007). https://doi.org/10.1002/macp.200700095

    Article  Google Scholar 

  73. J.R. Havens, D.L. VanderHart, Morphology of polyethylene terephthalate) fibers as studied by multiple-pulse NMR. Macromolecules 18, 1663–1676 (1985). https://doi.org/10.1021/ma00151a005

    Article  ADS  Google Scholar 

  74. P. Smith, P.J. Lemstra, Ultra-high strength polyethylene filaments by solution spinning/drawing 3 Influence of drawing temperature. Polymer 21, 1341–1343 (1980). https://doi.org/10.1016/0032-3861(80)90205-0

    Article  Google Scholar 

  75. W.-G. Hu, K. Schmidt-Rohr, Characterization of ultradrawn polyethylene fibers by NMR: crystallinity, domain sizes and a highly mobile second amorphous phase. Polymer 41, 2979–2987 (2000). https://doi.org/10.1016/S0032-3861(99)00429-2

    Article  Google Scholar 

  76. D.E. Demco, C. Melian, J. Simmelink, V.M. Litvinov, M. Möller, Structure and dynamics of drawn gel-spun ultra-high molecular weight polyethylene fibers by 1H, 13C and 129Xe NMR. Macromol. Chem. Phys. 211, 2611–2623 (2010). https://doi.org/10.1002/macp.201000455

    Article  Google Scholar 

  77. V.M. Litvinov, J. Xu, C. Melian, D.E. Demco, M. Möller, J. Simmelink, Morphology, chain dynamics and domain sizes in gel-spun ultra-high molecular weight polyethylene fibers at final stages of drawing by SAXS, WAXS and 1H solid-state NMR. Macromolecules 44, 9254–9266 (2011). https://doi.org/10.1021/ma201888f

    Article  ADS  Google Scholar 

  78. V.M. Litvinov, M.E. Ries, A. Henke, P. Matloka, T. Baughman, Chain entanglements in polyethylenes melts. Why it is studied again? Macromolecules 46, 541–547 (2013). https://doi.org/10.1021/ma302394j

    Article  ADS  Google Scholar 

  79. V.M. Litvinov, R.A. Orza, M. Klüppel, M. van Duin, P.C.M.M. Magusin, Rubber—filler interactions and network structure in relation to stress–strain behaviour of vulcanized, carbon black filled EPDM. Macromolecules 44, 4887–4900 (2011). https://doi.org/10.1021/ma2007255

    Article  ADS  Google Scholar 

  80. J.C. Kenny, V.J. McBrierty, Z. Rigbi, D.C. Douglass, Carbon black filled natural rubber. 1. Structural investigations. Macromolecules 24(2), 436–443 (1991). https://doi.org/10.1021/ma00002a015

    Article  ADS  Google Scholar 

  81. V.M. Litvinov, P.A.M. Steeman, EPDM-carbon black interactions and the reinforcement mechanisms, as studied by low-resolution 1H NMR. Macromolecules 32, 8476–8490 (1999). https://doi.org/10.1021/ma9910080

    Article  ADS  Google Scholar 

  82. J.W. ten Brinke, V.M. Litvinov, J.E.G.J. Wijnhoven, J.W.M. Noordermeer, Interactions of stöber silica with natural rubber under the influence of coupling agents, studied by 1H NMR T2 relaxation analysis. Macromolecules 35, 10026–10037 (2002). https://doi.org/10.1021/ma020555+

    Article  Google Scholar 

  83. V. M. Litvinov, A. A. Zhdanov. NMR study of the polymer-filler interactions. In: Doklady Phys. Chem.: Proceedings of the Academy of Sciences of the USSR 283, 811–814 (1985).

  84. V. M. Litvinov, Poly(dimethylsiloxane) Chains at a Silica Surface, in Organosilicon Chemistry II. From Molecules to Materials, ed. By N. Auner, J. Weis, (Wiley, Weinheim, 1996) pp. 779–814. (ISBN:9783527292547)

  85. V.J. McBrierty, J.C. Kenny, Structural investigations of carbon black-filled elastomers using NMR and ESR. Kautsch. Gummi Kunstst. 47, 342–348 (1994)

    Google Scholar 

  86. G. Leu, Y. Liu, D.D. Werstler, D.G. Cory, NMR characterization of elastomer−carbon black interactions. Macromolecules 37, 6883–6891 (2004). https://doi.org/10.1021/ma0493628

    Article  ADS  Google Scholar 

  87. J.F. Schenck, The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med. Phys. 23, 815–850 (1996). https://doi.org/10.1118/1.597854

    Article  Google Scholar 

  88. M.E.L. Wouters, V.M. Litvinov, F.L. Binsbergen, J.G.P. Goossens, M. van Duin, H.G. Dikland, Morphology of ethylene-propylene copolymers based ionomers as studied by solid state NMR and small angle X-ray scattering in relation to some mechanical properties. Macromolecules 36, 1147–1156 (2003). https://doi.org/10.1021/ma020358a

    Article  ADS  Google Scholar 

Download references

Acknowledgements

VL acknowledges long-standing research collaboration with Prof. B. Blümich, Prof. D. E. Demco, and members of their groups.

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 22161132007).

Author information

Authors and Affiliations

Authors

Contributions

VL generated the main idea of the review and wrote most of the text. Several topics in the review were discussed with YM. YM acquired funding and arranged project administration. Both authors reviewed the manuscript and approved it for the publication.

Corresponding author

Correspondence to V. M. Litvinov.

Ethics declarations

Conflict of Interest

The authors have not financial or personal nature interests that are directly or indirectly related to the work.

Ethical Approval

Not applicable.

Additional information

In honour of Prof. Bernhard Blümich on the occasion of his 70th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Litvinov, V.M., Men, Y. Morphology of Industrially Relevant Polymers by 1H NMR Spin-Diffusion. Appl Magn Reson 54, 1099–1133 (2023). https://doi.org/10.1007/s00723-023-01579-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-023-01579-y

Navigation