Skip to main content
Log in

Time Series Analysis of the Hybrid Quantum-Classical Method of Simulation of High-Temperature Spin Dynamics

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Series expansion of the two-spin correlation functions is obtained in the context of the hybrid quantum-classical method of simulation of high-temperature spin dynamics. The resulting series are compared with the corresponding series for the exact correlation functions obtained from purely quantum dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.J. Lowe, R.E. Norberg, Phys. Rev. 107, 46 (1957)

    Article  ADS  Google Scholar 

  2. M. Engelsberg, I.J. Lowe, Phys. Rev. B 10, 822 (1974)

    Article  ADS  Google Scholar 

  3. A. Abragam, Principles of Nuclear Magnetism (Oxford University Press, Oxford, 1961)

    Google Scholar 

  4. G.A. Starkov, B.V. Fine, Phys. Rev. B 98, 214421 (2018). https://doi.org/10.1103/PhysRevB.98.214421

    Article  ADS  Google Scholar 

  5. G.A. Starkov, Simulations of high-temperature spin dynamics. Ph.D. thesis, Skolkovo Institute of Science and Technology (2019). https://www.skoltech.ru/app/data/uploads/2019/10/THESIS_STARKOV.pdf. Accessed 9 Oct 2019

  6. G.A. Starkov, B.V. Fine, Phys. Rev. B 101, 024428 (2020). https://doi.org/10.1103/PhysRevB.101.024428

    Article  ADS  Google Scholar 

  7. A.A. Lundin, V.E. Zobov, J. Magn. Reson. 26, 229 (1977)

    ADS  Google Scholar 

  8. V.A. Atsarkin, J. Phys. Conf. Ser. 324, 012003 (2011). https://doi.org/10.1088/1742-6596/324/1/012003

    Article  Google Scholar 

  9. V.A. Atsarkin, A.V. Kessenikh, Appl. Magn. Reson. 43(1–2), 7 (2012). https://doi.org/10.1007/s00723-012-0328-7

    Article  Google Scholar 

  10. G.A. Bochkin, S.I. Doronin, S.G. Vasil’ev, A.V. Fedorova, E.B. Fel’dman, in International Conference on Micro- and Nano-Electronics 2016, ed. by V.F. Lukichev, K.V. Rudenko (SPIE, 2016). https://doi.org/10.1117/12.2263854

  11. S.I. Doronin, E.B. Fel’dman, I.D. Lazarev, Phys. Rev. A 100, 022330 (2019). https://doi.org/10.1103/PhysRevA.100.022330

    Article  ADS  Google Scholar 

  12. T.A. Elsayed, B.V. Fine, Phys. Rev. B 91, 094424 (2015)

    Article  ADS  Google Scholar 

  13. K.H. Yang, J.O. Hirschfelder, Phys. Rev. A 22, 1814 (1980). https://doi.org/10.1103/PhysRevA.22.1814

    Article  ADS  MathSciNet  Google Scholar 

  14. A.S. de Wijn, B. Hess, B.V. Fine, J. Phys. A Math. Theoret. 46(25), 254012 (2013)

    Article  ADS  Google Scholar 

  15. A. Hams, H. De Raedt, Phys. Rev. E 62, 4365 (2000). https://doi.org/10.1103/PhysRevE.62.4365

    Article  ADS  Google Scholar 

  16. T.A. Elsayed, B.V. Fine, Phys. Rev. Lett. 110(7), 070404 (2013)

    Article  ADS  Google Scholar 

  17. T.A. Elsayed, Chaos and Relaxation in Classical and Quantum Spin Systems. Ph.D. thesis, University of Heidelberg (2013). http://archiv.ub.uni-heidelberg.de/volltextserver/15648/1/thesis_tarek_elsayed.pdf. Accessed 6 May 2019

  18. S. Gade, I.J. Lowe, Phys. Rev. 148, 382 (1966)

    Article  ADS  Google Scholar 

  19. S.J.K. Jensen, O. Platz, Phys. Rev. B 7, 31 (1973)

    Article  ADS  Google Scholar 

  20. P. Navez, G.A. Starkov, B.V. Fine, Eur. Phys. J. Sp. Top. 227(15), 2013 (2019). https://doi.org/10.1140/epjst/e2018-800078-1

    Article  Google Scholar 

  21. J.W. Negele, H. Orland, Quantum Many-particle Systems (Frontiers in Physics) (Perseus Books, 1998)

Download references

Acknowledgements

I would like to thank Professor Boris Fine for the invaluable scientific advice. This work was supported by a grant of the Russian Science Foundation (Project No. 17-12-01587).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grigory A. Starkov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Infinite-Temperature Correlators of Arbitrary Order

Appendix: Infinite-Temperature Correlators of Arbitrary Order

In the calculation of the series expansion of the correlation functions in the hybrid case, one encounters the correlators of the form:

$$\begin{aligned} G^{(n)}_{{\mathscr {A}}_1,{\mathscr {A}}_2,\dotsc ,{\mathscr {A}}_n} = \left[ \langle \psi |{\mathscr {A}}_1|\psi \rangle \cdot \langle \psi |{\mathscr {A}}_2|\psi \rangle \cdot \cdots \cdot \langle \psi |{\mathscr {A}}_n|\psi \rangle \right] _\psi , \end{aligned}$$
(49)

where \([\cdots ]_\psi\) denotes the average over the infinite-temperature ensemble of normalized uniformly distributed wave-functions \(|\psi \rangle\). If we represent the wave-function

$$\begin{aligned} |\psi \rangle = \sum \limits _{k=1}^D a_k |k\rangle , \end{aligned}$$
(50)

in terms of some full orthonormal basis \({|k\rangle }\), we can reformulate Eq. (49) as

$$\begin{aligned}&G^{(n)}_{{\mathscr {A}}_1,{\mathscr {A}}_2,\dotsc ,{\mathscr {A}}_n} \nonumber \\&\quad = \sum \limits _{i_1,j_1}\sum \limits _{i_2,j_2}\cdots \sum \limits _{i_n,j_n} \left[ a^*_{i_1}a_{j_1}a^*_{i_2}a_{j_2}\cdots a^*_{i_n}a_{j_n}\right] _\psi ({\mathscr {A}}_1)_{i_1,j_1} ({\mathscr {A}}_2)_{i_2,j_2}\cdots ({\mathscr {A}}_n)_{i_n,j_n}, \end{aligned}$$
(51)

where

$$\begin{aligned} ({\mathscr {A}}_p)_{i_p,j_p} = \langle i_p|{\mathscr {A}}_p| j_p\rangle . \end{aligned}$$
(A4)

Given a particular choice of orthonormal basis in representation (50), the correlators for arbitrary sets of observables are completely determined by the matrix elements of observables and by the tensors:

$$\begin{aligned} F^{i_1,i_2,\dotsc ,i_n}_{j_1,j_2,\dotsc ,j_n} \equiv \left[ a^*_{i_1}a_{j_1}a^*_{i_2}a_{j_2}\cdots a^*_{i_n}a_{j_n}\right] _\psi . \end{aligned}$$
(53)

Since the distribution of wave functions describing infinite temperature is invariant with respect to unitary transformations, the choice of the orthonormal basis \(|k\rangle\) in representation (50) is arbitrary. As a consequence, the form of the tensors \(F^{i_1,i_2,\dotsc ,i_n}_{j_1,j_2,\dotsc ,j_n}\) is identical irrespective of this choice.

In order to deduce the form of the tensors \(F^{i_1,i_2,\dotsc ,i_n}_{j_1,j_2,\dotsc ,j_n}\) of arbitrary order, it is convenient to recast the Hilbert space average \([\cdots ]_{\psi }\) as a multidimensional integral over the expansion coefficients \(a_i\) in representation (50):

$$\begin{aligned}&F^{i_1,i_2,\dotsc ,i_n}_{j_1,j_2,\dotsc ,j_n} \equiv \left[ a^*_{i_1}a_{j_1}a^*_{i_2}a_{j_2}\cdots a^*_{i_n}a_{j_n}\right] _\psi \nonumber \\&\quad = \frac{\int \prod \nolimits _{k=1}^D \mathrm{d}a^*_k \mathrm{d}a_k \ \delta \left( \sqrt{\sum \nolimits _{k=1}^D a^*_k a_k} -1\right) a^*_{i_1}a_{j_1}a^*_{i_2}a_{j_2}\cdots a^*_{i_n}a_{j_n}}{\int \prod \nolimits _{k=1}^D \mathrm{d}a^*_k \mathrm{d}a_k\ \delta \left( \sqrt{\sum \nolimits _{k=1}^D a^*_k c_k} - 1\right) }, \end{aligned}$$
(54)

where \(\delta (\cdots )\) is the Dirac delta-function. Here the measure of integration \(\mathrm{d}\mu\) is defined in terms of the decomplexification of the Hilbert space:

$$\begin{aligned} d\mu = \prod _{i=1}^D \mathrm{d}a_i^*\mathrm{d}a_i = \prod _{p=1}^D \mathrm{d}{{\,\mathrm{Re}\,}}{a^*_i}\mathrm{d}{{\,\mathrm{Im}\,}}{a_i}. \end{aligned}$$
(55)

The denominator of Eq. (54) is the area \(A_{2D-1}\) of the \((2D-1)\)-dimensional unit hypersphere.

In order to evaluate the right-hand side of Eq. (54), let us introduce an auxiliary multidimensional integral:

$$\begin{aligned} I^{i_1,i_2,\dotsc ,i_n}_{j_1,j_2,\dotsc ,j_n} = \int \prod \limits _{k=1}^D \frac{\mathrm{d}a_k^*\mathrm{d}a_k}{\pi }\ e^{-\sum \limits _{k=1}^D a^*_ka_k} a^*_{i_1}a_{j_1}a^*_{i_2}a_{j_2}\cdots a^*_{i_n}a_{j_n}. \end{aligned}$$
(56)

On the one hand, it is a simple Gaussian integral and can be evaluated in the closed form with the use of the Wick’s theorem (see, for example, [21, Chapter 1]) as

$$\begin{aligned} I^{i_1,i_2,\dotsc ,i_n}_{j_1,j_2,\dotsc ,j_n} = \sum \limits _{P} \delta _{i_1, Pj_1} \cdot \delta _{i_2, Pj_2}\cdot \cdots \cdot \delta _{i_n,Pj_n}, \end{aligned}$$
(57)

where the summation is performed over all the permutations P of n indices \(\{j_1,j_2,\dotsc ,j_n\}\). On the other hand, we can split the integration into the integration over the surface of the \((2D-1)\)-dimensional hyper-sphere of radius r with the subsequent integration over the radius of that hypersphere:

$$\begin{aligned}&\int \prod \limits _{k=1}^D \frac{\mathrm{d}a_k^*\mathrm{d}a_k}{\pi }\ e^{-\sum \limits _{k=1}^D a^*_ka_k} a^*_{i_1}a_{j_1}a^*_{i_2}a_{j_2}\cdots a^*_{i_n}a_{j_n}\nonumber \\&\quad =\int \limits _0^{+\infty } \mathrm{d}r\ r^{2D-1} \int \prod \limits _{k=1}^D \frac{\mathrm{d}a_k^*\mathrm{d}a_k}{\pi }\ \delta \left( \sqrt{\sum \limits _{k=1}^D a^*_k a_k} - r\right) e^{-\sum \limits _{k=1}^D a^*_ka_k} a^*_{i_1}a_{j_1}a^*_{i_2}a_{j_2}\cdots a^*_{i_n}a_{j_n}\nonumber \\&\quad =\left[ a^*_{i_1}a_{j_1}a^*_{i_2}a_{j_2}\cdots a^*_{i_n}a_{j_n}\right] _\psi \cdot \frac{A_{2D-1}}{\pi ^D}\int \limits _0^{+\infty } dr e^{-r^2} r^{2(D+n)-1}. \end{aligned}$$
(58)

Here we have used the fact that

$$\begin{aligned}&\int \prod \limits _{k=1}^D \frac{\mathrm{d}c_k^*\mathrm{d}c_k}{\pi }\ \delta \left( \sqrt{\sum \limits _{k=1}^D a^*_k c_k} - r\right) e^{-\sum \limits _{k=1}^D a^*_kc_k} a^*_{i_1}a_{j_1}a^*_{i_2}a_{j_2}\cdots a^*_{i_n}a_{j_n}\nonumber \\&\quad =e^{-r^2} \int \prod \limits _{k=1}^D \frac{\mathrm{d}c_k^*\mathrm{d}c_k}{\pi }\ \delta \left( \sqrt{\sum \limits _{k=1}^D a^*_k c_k} - r\right) a^*_{i_1}a_{j_1}a^*_{i_2}a_{j_2}\cdots a^*_{i_n}a_{j_n}\nonumber \\&\quad = e^{-r^2} r^n \int \prod \limits _{k=1}^D \frac{dc_k^*\mathrm{d}c_k}{\pi }\ \delta \left( \sqrt{\sum \limits _{k=1}^D a^*_k c_k} -1\right) a^*_{i_1}a_{j_1}a^*_{i_2}a_{j_2}\cdots a^*_{i_n}a_{j_n} \nonumber \\&\quad =e^{-r^2} r^n A_{2D-1}\left[ a^*_{i_1}a_{j_1}a^*_{i_2}a_{j_2}\cdots a^*_{i_n}a_{j_n}\right] _\psi . \end{aligned}$$
(59)

In Eq. (58),

$$\begin{aligned}&\frac{A_{2D-1}}{\pi ^D}\int \limits _0^{+\infty } \mathrm{d}r e^{-r^2} r^{2(D+n)-1} \nonumber \\&\quad = \frac{A_{2D-1}}{\pi ^D}\int \limits _0^{+\infty } \mathrm{d}(r^2/2) e^{-r^2} r^{2(D+n-1)} = \frac{\varGamma (D+n)A_{2D-1}}{2\pi ^D}, \end{aligned}$$
(60)

where \(\varGamma (x)\) is the Euler’s gamma function, and

$$\begin{aligned} A_n \equiv \frac{2\pi ^{\frac{n+1}{2}}}{\varGamma (\frac{n+1}{2})} \end{aligned}$$
(61)

for odd n. Thus,

$$\begin{aligned} \frac{\varGamma (D+n)A_{2D-1}}{2\pi ^D} = \frac{\varGamma (D+n)}{\varGamma (D)}. \end{aligned}$$
(62)

Substituting Eq. (62) into Eq. (58) and comparing the result with Eq. (57), we, finally, get

$$\begin{aligned} F^{i_1,i_2,\dotsc ,i_n}_{j_1,j_2,\dotsc ,j_n} = \frac{\varGamma (D)}{\varGamma (D+n)} I^{i_1,i_2,\dotsc ,i_n}_{j_1,j_2,\dotsc ,j_n} = \frac{\varGamma (D)}{\varGamma (D+n)} \sum \limits _{P} \delta _{i_1, Pj_1} \cdot \delta _{i_2, Pj_2}\cdot \cdots \cdot \delta _{i_n,Pj_n}. \end{aligned}$$
(63)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starkov, G.A. Time Series Analysis of the Hybrid Quantum-Classical Method of Simulation of High-Temperature Spin Dynamics. Appl Magn Reson 52, 843–858 (2021). https://doi.org/10.1007/s00723-021-01355-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-021-01355-w

Navigation