Skip to main content
Log in

Radical Activity of Binary Melamine-Based Hydrogen-Bonded Self-Assemblies

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Melamine cyanurate and melamine barbiturate self-assembled materials were prepared and studied by the electron paramagnetic resonance (EPR) spectroscopy, optical and scanning electron microscopy, X-ray powder diffraction (XRD). Both optical and electron microscopy show the formation of microscale crystalline particles possessing complex layered structures with a highly stable appearance. Both assemblies tend to form twinned crystals, which in the barbiturate case leads to multiple twinning in every particle. Optical microscopy shows high anisotropy and birefringence of both materials. XRD data represent a high crystallinity of melamine barbiturate and much lower for melamine cyanurate. Studied materials reveal the ability to incorporate radicals that correlate with their crystal structure quality. It is attributed to the structure-dependent stabilization of active radical superoxide species in structure voids or defects. In the example of melamine barbiturate, it is shown that the number of active paramagnetic centers increases at ca. 22% when a substance is irradiated with UV + Vis light. It reaches saturation in approximately 20 min, whereas only ca. 14% decrease was observed in a week.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data available from the corresponding author on request.

References

  1. P. Fattibene, F. Callens, Appl. Radiat. Isotopes 68, 2033–2116 (2010)

    Article  Google Scholar 

  2. C.-T. Yang, A. Hattiholi, S.T. Selvan, S.X. Yan, W.-W. Fang, P. Chandrasekharan, P. Koteswaraiah, C.J. Herold, B. Gulyas, S.E. Aw, T. He, D.C.E. Ng, P. Padmanabhan, Acta Biomater. 110, 15–36 (2020)

    Article  Google Scholar 

  3. Y.V. Gorelkinskii, N.N. Nevinnyi, Phys. B: Condensed Matter 170, 155–167 (1991)

    Article  ADS  Google Scholar 

  4. J. Xiong, J. Di, J. Xia, W. Zhu, H. Li, Adv. Funct. Mater. 180, 2018 (1983)

    Google Scholar 

  5. L.D. Bogomolova, V.A. Jachkin, S.A. Prushinsky, S.V. Stefanovsky, Y.G. Teplyakov, F. Caccavale, J. Non-Cryst. Solids 220, 109–126 (1997)

    Article  ADS  Google Scholar 

  6. M.A. Borik, R.M. Eremina, E.E. Lomonova, V.A. Myzina, V.V. Osiko, I.I. Fazlizhanov, V.A. Shustov, I.V. Yatsyk, Mod. Electron. Mater. 3, 95–98 (2017)

    Article  Google Scholar 

  7. M.Y. Ivanov, M.V. Fedin, Mendeleev Commun. 28, 565–573 (2018)

    Article  Google Scholar 

  8. G. Whitesides, J. Mathias, C. Seto, Sci. 254, 1312–1319 (1991)

    Article  ADS  Google Scholar 

  9. T.J. Prior, J.A. Armstrong, D.M. Benoit, K.L. Marshall, CrystEngComm 15, 5838 (2013)

    Article  Google Scholar 

  10. K. Rovina, S. Siddiquee, J. Food Compos. Anal. 43, 25–38 (2015)

    Article  Google Scholar 

  11. V.V. Shilovskikh, A.A. Timralieva, P.V. Nesterov, A.S. Novikov, P.A. Sitnikov, E.A. Konstantinova, A.I. Kokorin, E.V. Skorb, Chem. Eur. J. 2, 2 (2020)

    Google Scholar 

  12. H.C. Garcia, R. Diniz, M.I. Yoshida, CrystEngComm 11, 881 (2009)

    Article  Google Scholar 

  13. A.Kh. Vorobiev, N.A. Chumakova, Nitroxides: Theory, Experiment and Applications (InTech Publ, Rijeka, 2012), pp. 57–112

    Google Scholar 

  14. J.B. Weber, Res. Rev. 32, 93–130 (1970)

    Google Scholar 

  15. M.J. O’Neil, J. Am. Chem. Soc. 129, 2197 (2007)

    Google Scholar 

  16. N. Türkel, M.S. Aksoy, ISRN Anal. Chem 2, 1–5 (2014)

    Article  Google Scholar 

  17. J.W.P. Schmelzer (ed.), Nucleation Theory and Applications (JINR, Dubna, 2005)

    Google Scholar 

  18. K. Sangwa, Nucleation and Crystal Growth: Metastability of Solutions and Melts (Wiley, New York, 2018)

    Book  Google Scholar 

  19. F. Kalischewski, I. Lubashevsky, A. Heuer, Phys. Rev. E 75, 2 (2007)

    Article  Google Scholar 

  20. C. Zhao, Z. Chen, J. Xu, Q. Liu, H. Xu, H. Tang, G. Li, Y. Jiang, F. Qu, Z. Lin, X. Yang, Appl. Catal. B Environ. 256, 117867 (2019)

    Article  Google Scholar 

  21. E.R. Draper, L.J. Archibald, M.C. Nolan, R. Schweins, M.A. Zwijnenburg, S. Sproules, D.J. Adams, Chem. Eur. J. 24, 4006–4010 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Ministry of Science and Higher Education of the Russian Federation, goszadanie no. 2019-1075. ITMO Fellowship and Professorship program 08-08 is acknowledged for infrastructural support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir V. Shilovskikh.

Ethics declarations

Conflict of interest

Authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shilovskikh, V.V., Timralieva, A.A., Belogub, E.V. et al. Radical Activity of Binary Melamine-Based Hydrogen-Bonded Self-Assemblies. Appl Magn Reson 51, 939–949 (2020). https://doi.org/10.1007/s00723-020-01254-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-020-01254-6

Navigation