Skip to main content
Log in

NMR Relaxation of Nuclei of Buffer as a Probe for Monitoring Protein Solutions Including Aggregation Processes

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Characterization of protein solutions is of great importance for biophysical research, pharmaceutical industry, and medicine. Particularly, the monitoring of the protein aggregation is crucial at all stages of biotechnological production and in the diagnosis of dangerous diseases. The present work is focused on a study of prospects and possibilities of NMR relaxation of solvent nuclei for monitoring the state of proteins in solutions. The spin–lattice and spin–spin relaxation rates (R1 and R2) of solvent nuclei were measured in the solutions of a small globular protein, RRM2 domain of TDP-43 protein. The solvent was either H2O- or D2O-based buffer with pH 6.5 and contained 20 mM sodium phosphate and 150 mM NaCl. The relaxation rates of the solvent 1H, 2H, 23Na, and 35Cl nuclei in solutions of soluble and aggregated RRM2 domain of TDP-43 protein were studied. The aggregation was induced by mild oxidative stress, using treatment by hydrogen peroxide. It was found that aggregation of protein could be detected using NMR relaxation of 1H nuclei. The observed CPMG dispersion for R2 rates confirms the millisecond timescale for the hydrogen exchange between water and protein sites. The correlation times and binding constants for sodium and chlorine ions were estimated using concentration dependences for relaxation rates (23Na, 35Cl). The relaxation rates of solvent nuclei are sensitive to the presence of protein in solution even at low protein concentrations, and the relaxation rates of different nuclei reflect various aspects of the state of the protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C. Haass, D.J. Selkoe, Nat. Rev. Mol. Cell Biol. 8, 101 (2007)

    Google Scholar 

  2. T. Strohäker, B.C. Jung, S.-H. Liou, C.O. Fernandez, D. Riedel, S. Becker, G.M. Halliday, M. Bennati, W.S. Kim, S.-J. Lee, M. Zweckstetter, Nat. Commun. 10, 5535 (2019)

    ADS  Google Scholar 

  3. B. Nizynski, W. Dzwolak, K. Nieznanski, Protein Sci. 26, 2126 (2017)

    Google Scholar 

  4. A.S. Chen-Plotkin, V.M.-Y. Lee, J.Q. Trojanowski, Nat. Rev. Neurol. 6, 211 (2010)

    Google Scholar 

  5. S.K. Maji, M.H. Perrin, M.R. Sawaya, S. Jessberger, K. Vadodaria, R.A. Rissman, P.S. Singru, K.P.R. Nilsson, R. Simon, D. Schubert, D. Eisenberg, J. Rivier, P. Sawchenko, W. Vale, R. Riek, Science 325, 328 (2009)

    ADS  Google Scholar 

  6. P.S. Dannies, Mol. Genet. Metab. 76, 6 (2002)

    Google Scholar 

  7. W.K. Schmidt, H.P. Moore, J. Biol. Chem. 269, 27115 (1994)

    Google Scholar 

  8. Y. Li, C.J. Roberts, in Aggregation of Therapeutic Proteins, ed. by W. Wang, C.J. Roberts (Wiley, Hoboken, 2010), pp. 63–102

    Google Scholar 

  9. S. Gregoire, J. Irwin, I. Kwon, Korean J. Chem. Eng. 29, 693 (2012)

    Google Scholar 

  10. Z. Yu, J.C. Reid, Y.-P. Yang, J. Pharm. Sci. 102, 4284 (2013)

    Google Scholar 

  11. D.L. Melnikova, V.D. Skirda, I.V. Nesmelova, J. Phys. Chem. B 121, 2980 (2017)

    Google Scholar 

  12. I.V. Nesmelova, D.L. Melnikova, V. Ranjan, V.D. Skirda, Progr. Mol. Biol. Transl. Sci. 166, 85 (2019)

    Google Scholar 

  13. S. Kiihne, R.G. Bryant, Biophys. J. 78, 2163 (2000)

    ADS  Google Scholar 

  14. B.P. Hills, S.F. Takacs, P.S. Belton, Mol. Phys. 67, 903 (1989)

    ADS  Google Scholar 

  15. B.P. Hills, S.F. Takacs, P.S. Belton, Mol. Phys. 67, 919 (1989)

    ADS  Google Scholar 

  16. M.B. Taraban, R.A. DePaz, B. Lobo, Y.B. Yu, Anal. Chem. 89, 5494 (2017)

    Google Scholar 

  17. B. Halle, Philos. Trans. R. Soc. B Biol. Sci. 359, 1207 (2004)

    Google Scholar 

  18. V.P. Denisov, B. Halle, J. Am. Chem. Soc. 124, 10264 (2002)

    Google Scholar 

  19. J.S. Leigh, J. Magn. Reson. 1969(4), 308 (1971)

    ADS  Google Scholar 

  20. S.O. Rabdano, A.V. Donets, M.A. Vovk, D. Michel, V.I. Chizhik, J. Phys. Chem. B 119, 13358 (2015)

    Google Scholar 

  21. M.B. Taraban, R.A. DePaz, B. Lobo, Y.B. Yu, Anal. Chem. 91, 4107 (2019)

    Google Scholar 

  22. J.P. Carver, R.E. Richards, J. Magn. Reson. 1969(6), 89 (1972)

    ADS  Google Scholar 

  23. K.A. Valiev, J. Struct. Chem. 3, 630 (1962)

    Google Scholar 

  24. A. Geiger, H.G. Hertz, Adv. Mol. Relax. Process. 9, 293 (1977)

    Google Scholar 

  25. V.I. Chizhik, Y.S. Chernyshev, A.V. Donets, V.V. Frolov, A.V. Komolkin, M.G. Shelyapina, in Magnetic Resonance and Its Applications (Springer, Cham, 2014)

    Google Scholar 

  26. T.L. James, J.H. Noggle, Proc. Natl. Acad. Sci. USA 62, 644 (1969)

    ADS  Google Scholar 

  27. A.M. Torres, D.J. Philp, R. Kemp-Harper, C. Garvey, P.W. Kuchel, Magn. Reson. Chem. 43, 217 (2005)

    Google Scholar 

  28. T. Janc, M. Lukšič, V. Vlachy, B. Rigaud, A.-L. Rollet, J.-P. Korb, G. Mériguet, N. Malikova, Phys. Chem. Chem. Phys. 20, 30340 (2018)

    Google Scholar 

  29. T. Minami, W.S. Price, D.J. Cutler, J. Pharm. Sci. 81, 419 (1992)

    Google Scholar 

  30. W.S. Price, P.W. Kuchel, B.A. Cornell, Biophys. Chem. 40, 329 (1991)

    Google Scholar 

  31. W.S. Price, N.H. Ge, L.Z. Hong, L.P. Hwang, J. Am. Chem. Soc. 115, 1095 (1993)

    Google Scholar 

  32. R.L. Ward, Arch. Biochem. Biophys. 169, 22 (1975)

    Google Scholar 

  33. S.O. Rabdano, S.A. Izmailov, D.A. Luzik, A. Groves, I.S. Podkorytov, N.R. Skrynnikov, Sci. Rep. 7, 11161 (2017)

    ADS  Google Scholar 

  34. D. Wierzuchowska, L.W. Skórski, B. Blicharska, Acta Phys. Pol. A 129, 226 (2016)

    ADS  Google Scholar 

  35. A. Jerschow, N. Müller, J. Magn. Reson. 125, 372 (1997)

    ADS  Google Scholar 

  36. J.J. Helmus, C.P. Jaroniec, J. Biomol. NMR 55, 355 (2013)

    Google Scholar 

  37. SciPy 1.0 Contributors, P. Virtanen, R. Gommers, T.E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S.J. van der Walt, M. Brett, J. Wilson, K.J. Millman, N. Mayorov, A.R.J. Nelson, E. Jones, R. Kern, E. Larson, C.J. Carey, İ. Polat, Y. Feng, E.W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E.A. Quintero, C.R. Harris, A.M. Archibald, A.H. Ribeiro, F. Pedregosa, P. van Mulbregt, Nat. Methods 17, 261 (2020)

    Google Scholar 

  38. V.V. Krishnan, J. Magn. Reson. 124, 468 (1997)

    ADS  Google Scholar 

  39. D. Wierzuchowska, M. Witek, B. Blicharska, Acta Phys. Pol. A 137, 21 (2020)

    ADS  Google Scholar 

  40. R.R. Knispel, M.M. Pintar, Chem. Phys. Lett. 32, 238 (1975)

    ADS  Google Scholar 

  41. M. Pfuhl, HoA Chen, SørenM Kristensen, PaulC Driscoll, J. Biomol. NMR 14, 307 (1999)

    Google Scholar 

  42. V. Levi, F.L. González Flecha, Biochim. Biophys. Acta BBA Proteins Proteom. 1599, 141 (2002)

    Google Scholar 

  43. Z. Liu, W.-P. Zhang, Q. Xing, X. Ren, M. Liu, C. Tang, Angew. Chem. Int. Ed. 51, 469 (2012)

    Google Scholar 

  44. M.E.M. Cromwell, E. Hilario, F. Jacobson, AAPS J. 8, E572 (2006)

    Google Scholar 

  45. N.-H. Ge, W.S. Price, L.-Z. Hong, L.-P. Hwang, J. Magn. Reson. 1969(97), 656 (1992)

    ADS  Google Scholar 

  46. E. Canet, D. Mammoli, P. Kadeřávek, P. Pelupessy, G. Bodenhausen, Phys. Chem. Chem. Phys. 18, 10144 (2016)

    Google Scholar 

  47. S. Scheiner, M. Čuma, J. Am. Chem. Soc. 118, 1511 (1996)

    Google Scholar 

  48. A. Donets, V. Chizhik, Struct. Chem. 22, 465 (2011)

    Google Scholar 

  49. V.I. Chizhik, Mol. Phys. 90, 653 (1997)

    ADS  Google Scholar 

  50. M.M. Civan, M. Shporer, in Biological Magnetic Resonance, ed. by L.J. Berliner, J. Reuben (Springer, Boston, 1978), pp. 1–32

    Google Scholar 

  51. V.I. Chizhik, I.S. Podkorytov, A.P. Kaikkonen, V.I. Mikhailov, J. Magn. Reson. A 123, 1 (1996)

    ADS  Google Scholar 

  52. B. Hoffmann, C. Eichmüller, O. Steinhauser, R. Konrat, Methods Enzymol. 394, 142–175 (2005)

    Google Scholar 

  53. A. Schedlbauer, N. Coudevylle, R. Auer, K. Kloiber, M. Tollinger, R. Konrat, J. Am. Chem. Soc. 131, 6038 (2009)

    Google Scholar 

  54. A.C. Liwang, A. Bax, J. Magn. Reson. 127, 54 (1997)

    ADS  Google Scholar 

  55. R. Eggenberger, S. Gerber, H. Huber, D. Searles, M. Welker, J. Chem. Phys. 97, 5898 (1992)

    ADS  Google Scholar 

  56. V.I. Chizhik, A.V. Egorov, M.S. Pavlova, M.I. Egorova, A.V. Donets, J. Mol. Liq. 224, 730 (2016)

    Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Nikolai Skrynnikov for the initial discussions about the idea of the study of protein solutions and aggregation problem using NMR relaxation of water nuclei; Mikhail Vovk and Vladislav Salikov for the help with collection and processing 2H, 23Na, and 35Cl relaxation data; Dr. Boris Kharkov for the help with a collection of 1H diffusion data. The research was supported by RFBR and CITMA according to project #18-53-34003. Most of NMR measurements were performed at the Research park of St. Petersburg State University “Center for Magnetic Resonance”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Rabdano.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabdano, S.O., Bystrov, S.S., Luzik, D.A. et al. NMR Relaxation of Nuclei of Buffer as a Probe for Monitoring Protein Solutions Including Aggregation Processes. Appl Magn Reson 51, 1653–1668 (2020). https://doi.org/10.1007/s00723-020-01227-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-020-01227-9

Navigation