Skip to main content
Log in

51V and 25Mg NMR Study of the Kagome Staircase Compound Mg3V2O8

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The 51V and 25Mg nuclear magnetic resonance (NMR) spectra have been obtained and magnetic susceptibility has been measured in polycrystalline Mg3V2O8. The analysis of 51V NMR spectra has shown that the line shift, δ(51V) = − 555 ppm, does not depend on temperature. It has been established that vanadium ions V5+ have a zero magnetic moment in this structure. The 25Mg NMR spectrum consists of two lines corresponding to two crystallographically nonequivalent positions of magnesium ions in the Kagome structure: Mg(1) are « spine » and Mg(2) are « cross tie » . Quadrupole frequencies and asymmetry parameters of 25Mg and 51V NMR spectra have been determined. The magnetic susceptibility is turn out to be zero (within the error) and remains constant over at a whole temperature range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W.D. Harding, H.H. Kung, V.L. Kozhevnikov, K.R. Poeppelmeier, J. Catal. 144, 597 (1993)

    Article  Google Scholar 

  2. S. Slyemi, J. Blanchard, S. Barama, A. Barama, H. Messaoudi, S. Casale, C. Calers, Z. Ihdene, C. R. Chimie 20, 1062 (2017)

    Article  Google Scholar 

  3. L. Balderas-Tapia, I. Hernández-Pérez, P. Schacht, I.R. Córdova, G.G. Aguilar-Ríos, Catal. Today 107–108, 371 (2005)

    Article  Google Scholar 

  4. X. Wang, H. Zhang, W. Sinkler, K.R. Poeppelmeier, L.D. Marks, J. Alloys Comp. 270, 88 (1998)

    Article  Google Scholar 

  5. N. Krishnamachari, C. Calvo, Canad. J. Chem. 49, 1629 (1971)

    Article  Google Scholar 

  6. O.N. Leonidova, A.A. Fotiev, I.A. Leonidov, Inorg. Mater. 28, 1136 (1992)

    Google Scholar 

  7. R. Szymczak, M. Baran, R. Diduszko, J. Fink-Finowicki, M. Gutowska, A. Szewczyk, H. Szymczak, Phys. Rev. B 73, 094425 (2006)

    Article  ADS  Google Scholar 

  8. G. Lawes, A.B. Harris, T. Kimura, N. Rogado, R.J. Cava, A. Aharony, O. Entin-Wohlman, T. Yildirim, M. Kenzelmann, C. Broholm, A.P. Ramirez, Phys. Rev. Lett. 95, 087205 (2005)

    Article  ADS  Google Scholar 

  9. N. Rogado, G. Lawes, D.A. Huse, A.P. Ramirez, R.J. Cava, Solid State Commun. 124, 229 (2002)

    Article  ADS  Google Scholar 

  10. G. Lawes, M. Kenzelmann, N. Rogado, K.H. Kim, G.A. Jorge, R.J. Cava, A. Aharony, O. Entin-Wohlman, A.B. Harris, T. Yildirim, Q.Z. Huang, S. Park, C. Broholm, A.P. Ramirez, Phys. Rev. Lett. 93, 247201 (2004)

    Article  ADS  Google Scholar 

  11. J.D. Pless, N. Erdman, D. Ko, L.D. Marks, P.C. Stair, K.R. Poeppelmeier, Cryst. Growth Des. 3(4), 615 (2003)

    Article  Google Scholar 

  12. V. Ogloblichev, K. Kumagai, S. Verkhovskii, A. Yakubovsky, K. Mikhalev, Yu. Furukawa, A. Gerashenko, A. Smolnikov, S. Barilo, G. Bychkov, S. Shiryaev, Phys. Rev. B. 81, 144404 (2010)

    Article  ADS  Google Scholar 

  13. V. Ogloblichev, K. Kumagai, A. Yakubovskii, K. Mikhalev, Y. Furukawa, S. Verkhovskii, A. Gerashenko, S. Barilo, G. Bychkov, S. Shiryaev, A. Korolev, J. Phys, Conf. Ser. 150, 42148 (2009)

    Article  Google Scholar 

  14. A.G. Smol’nikov, V.V. Ogloblichev, A.F. Sadykov, Y.V. Piskunov, A.P. Gerashchenko, S.V. Verkhovskii, A.Y. Yakubovskii, S.N. Barilo, G.L. Bychkov, S.V. Shiryaev, J. Exp. Theoret. Phys. 112, 1020 (2011)

    Article  ADS  Google Scholar 

  15. A.A. Mukhin, V.Y. Ivanov, A.M. Kuzmenko, A.S. Prokhorov, A.A. Pronin, S.N. Barilo, G.L. Bychkov, S.V. Shiryaev, JETP Lett. 91(3), 147 (2010)

    Article  ADS  Google Scholar 

  16. V.I. Chizhik, Y.S. Chernyshev, A.V. Donets, V. Frolov, A. Komolkin, M.G. Shelyapina, Magnetic Resonance and Its Applications (Springer, Berlin, 2014), p. 782

    Book  Google Scholar 

  17. O.B. Lapina, V.M. Mastikhin, A.A. Shubin, V.N. Krasilnikov, K.I. Zamaraev, Prog. NMR Spectrosc. 24, 457 (1992)

    Article  Google Scholar 

  18. S. Sugiyama, Y. Hirata, T. Osaka, T. Moriga, K. Nakagawa, K. Sotowa, J. Ceram. Soc. Jpn. 115(10), 667 (2007)

    Article  Google Scholar 

  19. M.L. Occelli, R.S. Maxwell, H. Eckert, J. Catal. 137, 36 (1992)

    Article  Google Scholar 

  20. E.F. Aboelfetoh, M. Fechtelkord, R. Pietschnig, J. Mol. Catal. A: Chem. 318, 51 (2010)

    Article  Google Scholar 

  21. O.B. Lapina, A.V. Simakov, V.M. Mastikhin, S.A. Veniaminov, A.A. Shubin, J. Mol. Catal. 50, 55 (1989)

    Article  Google Scholar 

  22. D.S.H. Sam, V. Soenen, J.C. Volta, J. Catal. 123, 417 (1990)

    Article  Google Scholar 

  23. J. Rodríguez-Carvajal, Phys. B 192, 55 (1993)

    Article  ADS  Google Scholar 

  24. A.G. Smol’nikov, V.V. Ogloblichev, S.V. Verkhovskii, K.N. Mikhalev, A.Y. Yakubovskii, Y. Furukawa, Y.V. Piskunov, A.F. Sadykov, S.N. Barilo, S.V. Shiryaev, Phys. Metals Metallogr. 118, 134 (2017)

    Article  ADS  Google Scholar 

  25. A.F. Sadykov, A.P. Gerashchenko, Y.V. Piskunov, V.V. Ogloblichev, A.G. Smol’nikov, S.V. Verkhovskii, A.Y. Yakubovskii, E.A. Tishchenko, A.A. Bush, J. Exp. Theoret. Phys. 115, 666 (2012)

    Article  ADS  Google Scholar 

  26. D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calve, B. Alonso, J.-O. Durand, B. Bujoli, Zh Gan, G. Hoatson, Magn. Reson. Chem. 40, 70 (2002)

    Article  Google Scholar 

  27. H. Chihara, N. Nakamura, Nuclear Quadrupole Resonance Spectroscopy Data (Springer Berlin Heidelberg, Heidelberg, 1993), p. 437

    Google Scholar 

  28. H. Chihara, N. Nakamura, Nuclear Quadrupole Resonance Spectroscopy Data (Springer Berlin Heidelberg, Heidelberg, 1997), p. 424. https://www.springer.com/us/book/9783540624288

    Book  Google Scholar 

  29. A. Abragam, The Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1961), p. 599

    Google Scholar 

  30. C.P. Slichter, Principles of Magnetic Resonance (Harper & Row, New York, 1963), p. 246

    Google Scholar 

  31. D. Freude, J. Haase, in NMR Basic Principles and Progress, vol. 29, ed. by P. Diehl, E. Fluck, H. Günther, R. Kosfeld (Springer, Berlin, 1993), pp. 1–90

    Google Scholar 

  32. J. Autschbach, S. Zheng, R.W. Schurko, Concepts Magn. Reson. A 36, 84 (2010)

    Article  Google Scholar 

  33. R.E. Wasylishen, S.E. Ashbrook, S. Wimperis, NMR of Quadrupolar Nuclei in Solid Materials (Wiley, Chichester, 2012), p. 584

    Google Scholar 

  34. V.S. Grechishkin, Nuclear Quadrupole Interactions in Solids (Nauka, Moscow, 1973), p. 264. (In Russian)

    Google Scholar 

  35. J.C.C. Freitas, M.E. Smith, Annu. Rep. NMR Spectrosc. 75, 25 (2012)

    Article  Google Scholar 

  36. P.J. Pallister, I.L. Moudrakovski, J.A. Ripmeester, Phys. Chem. Chem. Phys. 11, 11487 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The research was carried out within the state assignment of Minobrnauki of Russia (theme “Function” No. AAAA-A19-119012990095-0) and the project of the complex program of Ural Branch of the Russian Academy of Sciences № 18-10-3-32. The authors are grateful to I. A. Leonidov and A. L. Buzlukov for the productive discussion of the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasily V. Ogloblichev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogloblichev, V.V., Mikhalev, K.N., Leonidova, O.N. et al. 51V and 25Mg NMR Study of the Kagome Staircase Compound Mg3V2O8. Appl Magn Reson 50, 1409–1418 (2019). https://doi.org/10.1007/s00723-019-01165-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-019-01165-1

Navigation