Skip to main content
Log in

Application of a Stopped-Flow EPR Method for the Detection of Short-Lived Flavonoid Semiquinone Radicals Produced by Oxidation Using 15N-Labeled Nitrosodisulfonate Radical (Fremy’s Salt)

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

A stopped-flow-electron paramagnetic resonance (EPR) method was applied for the detection of short-lived radicals of flavonoids bearing a catechol moiety as the B-ring, such as flavonols (quercetin, fisetin, and rutin), flavanones (eriodictyol and taxifolin), flavanols (catechin and epicatechin), and flavone (luteolin). 15N-labeled sodium salt of nitrosodisulfonate (15NDS) was employed to obtain the highly resolved EPR hyperfine structure (hfs) of flavonoid-derived semiquinone radicals under stoichiometrically regulated reaction conditions in aqueous media (pH 10). The EPR hfs of these flavonoids radicals, except catechin and epicatechin, were recorded. Based on the g value and the proton hyperfine coupling constants (hfcc), these flavonoid-derived radicals were assigned to be semiquinone radicals of the catechol moiety (B-ring). For example, the observed EPR hyperfine structure (hfs) of the luteolin radical (Lut−·) was composed of four sets of doublet splitting, which could be ascribed to the three protons of the B-ring (a2′ = 0.136, a5′ = 0.102, and a6′ = 0.272 mT) and a vinyl proton of the C-ring (a3 = 0.099 mT). In addition, the characteristically small doublet splitting resolved for the fisetin anion radical (Fis−·, 0.028 mT) was assigned to the aromatic proton at the C5 carbon of the A-ring, indicating that the unpaired electron of the radials was partially delocalized onto the A-ring through the π bonds involved in the vinyl-carbonyl moiety of the C-ring. The hfcc of the methine protons at the C2 carbon of taxifolin and eriodictyol-derived radicals (Tax−· and Eri−·) was, respectively, evaluated to be 0.102 and 0.230 mT. The assignment of the proton hfcc of flavonoid-derived semiquinone radicals will be discussed in relation with the molecular structure of the C-ring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C. Rice-Evance, N.J. Miller, G. Paganga, Free Radic. Biol. Med. 20, 933 (1996)

    Article  Google Scholar 

  2. L. Madsen, C.M. Andersen, L.V. Jorgensen, Eur. Food Res. Technol. 211, 240 (2000)

    Article  Google Scholar 

  3. K. Lemanska, H. Szymusiak, B. Tyrakowska, R. Zielinski, E.M.F. Soffers, I.M.C.M. Rietjens, Free Radic. Biol. Med. 31, 869 (2001)

    Article  Google Scholar 

  4. Ø.M. Andersen, K.R. Markham (eds.), Flavonoids chemistry, biochemistry and applications (CRC Press, Boca Raton, 2006)

    Google Scholar 

  5. P. Knekt, J. Kumpulainen, R. Järvinen, H. Rissanen, M. Heliövaara, A. Reunanen, T. Hakulinen, A. Aromaa, Am. J. Clin. Nutr. 76, 560 (2002)

    Article  Google Scholar 

  6. J. Zielonka, H. Zhao, Y. Xu, B. Kalyanaraman, Free Radic. Biol. Med. 39, 853 (2005)

    Article  Google Scholar 

  7. N. Cotelle, J.-L. Bernier, J.-P. Catteau, J. Pommery, J.-C. Wallet, E.M. Gaydou, Free Radical Biol. Med. 20, 35 (1996)

    Article  Google Scholar 

  8. S.V. Javanovic, S. Steenken, M. Tosic, B. Marjanovic, M.G. Simic, J. Am. Chem. Soc. 116, 4846 (1999)

    Article  Google Scholar 

  9. W. Bors, C. Langebartels, C. Michel, H. Sandermann Jr., Phytochemistry 28, 1589 (1989)

    Article  Google Scholar 

  10. H. Zimmer, D.C. Lankin, S.W. Horgan, Chem. Rev. 71, 229 (1971)

    Article  Google Scholar 

  11. H. Sanuki, R.-K. Watanabe, T. Ideguchi, S. Sakamoto, K. Ichimori, K. Kanaori, K. Tajima, Chem. Lett. 36, 1388 (2007)

    Article  Google Scholar 

  12. O. Dangles, C. Dufour, S. Bret, J. Chem. Soc. 16, 737 (1994)

    Google Scholar 

  13. Y. Sakurai, H. Sanuki, R.-K. Watanabe, T. Ideguchi, N. Yanagi, K. Kawai, K. Kanaori, K. Tajima, Chem. Lett. 37, 1270 (2008)

    Article  Google Scholar 

  14. W. Moser, R. A. Howie, J. Chem. Soc. (A), 3039 (1968)

  15. M. Biler, D. Biedermann, K. Valentova, V. Kren, M. Kubala, Chem. Chem. Phys. 19, 26870 (2017)

    Article  Google Scholar 

  16. S. Selvam, A.K. Mishra, Photochem. Photobiol. Sci. 10, 66 (2011)

    Article  Google Scholar 

  17. M. Friedman, H.S. Jürgens, J. Agric. Food Chem. 48, 2101 (2000)

    Article  Google Scholar 

  18. K. Sabally, S. Karboune, R. St-Louis, S. Kermasha, J. Biotechnol. 127, 167 (2006)

    Article  Google Scholar 

  19. J. A. Kuhnle, J. J. Windle, A. C. Waiss, J. Chem. Soc. (B), 613–616 (1969)

  20. K. Huvaere, K. Olsen, L.H. Skibsted, J. Org. Chem. 74, 7283 (2009)

    Article  Google Scholar 

  21. F. Gerson, W. Huber, Electron spin resonance spectroscopy of organic radicals (Wiley, Weinheim, 2003)

    Book  Google Scholar 

  22. S. Ramesova, R. Sokolova, I. Degano, J. Bulickova, J. Azbka, M. Gal, Anal. Bioanal. Chem. 402, 975 (2012)

    Article  Google Scholar 

  23. J.A. Kennedy, M.H.G. Munro, H.K.J. Powell, L.J. Porter, L.Y. Foo, Aust. J. Chem. 37, 885 (1984)

    Article  Google Scholar 

  24. J.M. Herrero-Martinez, M. Sanmartin, M. Roses, E. Bosch, C. Rafols, Electrophoresis 26, 1886 (2005)

    Article  Google Scholar 

  25. M. Adams, M.S. Blois, R.H. Sands, J. Chem. Phys. 28, 774 (1958)

    Article  ADS  Google Scholar 

  26. S. Fiorucci, J. Golebiowski, D. Cabrol-Baxx, S. Antonczak, J. Agric. Food Chem. 55, 903 (2007)

    Article  Google Scholar 

  27. P. Trouillas, P. Marsal, D. Siri, R. Lazzaroni, J. Duroux, Food Chem. 97, 679 (2006)

    Article  Google Scholar 

  28. L.A. Levchenko, S.I. Kulakovskaya, A.V. Kulikov, A.P. Sadkov, A.E. Shilov, Appl. Biochem. Biotech. 88, 201 (2000)

    Article  Google Scholar 

  29. A. J. Dobbs, B. C. Gilbert, R. O. C. Norman, J. Chem. Soc. (A), 124 (1971)

  30. C. Heller, H.M. McConnell, J. Chem. Phys. 24, 764 (1956)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by a Grant-in-aid for Scientific Research (C) (17K07817) from the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunihiko Tajima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuwabara, K., Sakurai, Y., Sanuki, H. et al. Application of a Stopped-Flow EPR Method for the Detection of Short-Lived Flavonoid Semiquinone Radicals Produced by Oxidation Using 15N-Labeled Nitrosodisulfonate Radical (Fremy’s Salt). Appl Magn Reson 49, 911–924 (2018). https://doi.org/10.1007/s00723-018-1012-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-018-1012-3

Navigation