Skip to main content
Log in

Comparison of 12 Quadrature Birdcage Coils with Different Leg Shapes at 9.4 T

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The purpose of this study was to analyse the relationship between the radio frequency (RF) coil performance and conductor surface shape for ultra-high field (UHF) magnetic resonance imaging. Twelve different leg-shaped quadrature birdcage coils were modeled and built, e.g., 4 mm-width-leg conventional birdcage coil, 7 mm-width-leg conventional birdcage, 10 mm-width-leg conventional birdcage coil, 13 mm-width-leg conventional birdcage coil, inside arc-shape-leg birdcage coil, outward arc-shape-leg birdcage coil, inside right angle-shape-leg birdcage coil, outward right angle-shape-leg birdcage coil, vertical 4 mm-width-leg vertical birdcage, 6 mm-width-leg vertical birdcage, 8 mm-width-leg vertical birdcage and 10 mm-width-leg vertical birdcage. Studies were carried out in both electromagnetic simulations with finite element method as well as in vitro saline phantom experiments at 9.4 T. Both the results of simulation and experiment showed that conventional birdcage coil produces the highest signal-to-noise ratio (SNR) while the vertical birdcage coil produces the most homogeneous RF magnetic (B 1) field at UHF. For conventional birdcage coils, as well as the vertical birdcage coils, only the proper width of legs results in the best performance (e.g., B 1 homogeneous and SNR). For vertical birdcage coils, the wider the leg size, the higher RF magnetic (B 1) field intensity distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Stara, G. Tiberi, M. Gabrieli, G. Buonincontri, N. Fontana, A. Monorchio, M. Costagli, M.R. Symms, A. Retico, M. Tosetti, Concepts Magn. Reson. Part B Magn. Reson. Eng. 44(4), 83–88 (2014)

    Article  Google Scholar 

  2. G. Lykowsky, F. Carinci, M. Düring, D. Weber, P.M. Jakob, D. Haddad, Quant. Imaging Med. Surg. 5(6), 799–805 (2015)

    Google Scholar 

  3. G. Giovannetti, F. Frijia, V. Hartwig, L. Menichetti, J.H. Ardenkjaer-Larsen, D. De Marchi, V. Positano, L. Landini, M. Lombardi, M.F. Santarelli, Measurement 46(7), 2201–2205 (2013)

    Article  Google Scholar 

  4. D.A. Seeber, J. Jevtic, A. Menon, Concepts Magn. Reson. Part B Magn. Reson. Eng. 21B, 26–31 (2004)

    Article  Google Scholar 

  5. G. Giovannetti, F. Frijia, S. Attanasio, L. Menichetti, V. Hartwig, N. Vanello, J.H. Ardenkjaer-Larsen, D. De Marchi, V. Positano, R. Schulte, L. Landini, M. Lombardi, M.F. Santarelli, Measurement 46(9), 3282–3290 (2013)

    Article  Google Scholar 

  6. C.-K. Kang, S.-M. Hong, J.-Y. Han, K.-N. Kim, S.-H. Kim, Y.-B. Kim, Z.-H. Cho, Magn. Reson. Med. Off. J. Soc. Magn. Reson. Med. 60(2), 330–338 (2008)

    Article  Google Scholar 

  7. P.M. Robitaille, L. Berliner, Ultra High-Field Magnetic Resonance Imaging (Springer, New York, 2006)

    Book  Google Scholar 

  8. W. Liu, S. Zhang, C.M. Collins, J. Wang, M.B. Smith, Concepts Magn. Reson. Part B Magn. Reson. Eng. 29b(4), 83–92 (2006)

    Article  Google Scholar 

  9. P. Heo, J.-H. Seo, S.-D. Han, Y. Ryu, J.-D. Byun, K.-N. Kim, J.-H. Lee, Scanning 38(6), 747–756 (2016)

    Article  Google Scholar 

  10. R. Stara, G. Tiberi, M. Gabrieli, G. Buonincontri, N. Fontana, A. Monorchio, M. Costagli, A.R. Symms, A. Retico, M. Tosetti, Concepts Magn. Reson. Part B Magn. Reson. Eng. 44, 83–88 (2015)

    Article  Google Scholar 

  11. G. Giovannetti, G. Tiberi, Appl. Magn. Reson. 46(6), 1–12 (2016)

    Google Scholar 

  12. G. Giovannetti, V. Hartwig, F. Frijia, L. Menichetti, V. Positano, J.H. Ardenkjaer-Larsen, L. Landini, M. Lombardi, M.F. Santarelli, Measurement 60, 78–84 (2015)

    Article  Google Scholar 

  13. R. Martin, J.F. Vazquez, O. Marrufo, S.E. Solis, A. Osorio, A.O. Rodriguez, Measurement 82, 482–489 (2016)

    Article  Google Scholar 

  14. N.D. Zanche, K.P. Pruessmann, Magn. Reson. Med. 74, 1470–1481 (2014)

    Article  Google Scholar 

  15. Y. Xie, HFSS Principle and Engineering Application (Science Press, Beijing, 2009)

    Google Scholar 

  16. J. Jin, Electromagnetic Analysis and Design in Magnetic Resonance Imaging (CRC Press, Boca Raton, 1999)

  17. J. Mispelter, M. Lupu, A. Briguet, NMR Probeheads for Biophysical and Biomedical Experiments (Imperial College Press, London, 2013)

    Google Scholar 

  18. C. Qian, I.S. Masad, J.T. Rosenberg, M. Elumalai, W.W. Brey, S.C. Grant, P.L. Gor’kov, J. Magn. Reson. 221, 110–116 (2012)

    Article  ADS  Google Scholar 

  19. W. Liu, C.M. Collins, P.J. Delp, M.B. Smith, Magn. Reson. Med. 51, 217–221 (2004)

    Article  Google Scholar 

  20. Z. Donglin, J.H. Gao, Magnetic Resonance Imaging—the Physical Principle and Method (Beijing University Press, Beijing, 2014)

    Google Scholar 

  21. V.V. Kampani, A High-Pass Detunable Quadrature Birdcage Coil at High-Field (Texas A & M University, College Station, 2008)

    Google Scholar 

  22. F.D. Doty, G. Entzminger Jr, C.D. Hauck, J.P. Staab J. Magn. Reson. 138, 144–154 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfeng Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Wen, Q. Comparison of 12 Quadrature Birdcage Coils with Different Leg Shapes at 9.4 T. Appl Magn Reson 48, 901–909 (2017). https://doi.org/10.1007/s00723-017-0920-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-017-0920-y

Navigation