Skip to main content
Log in

Broadband Continuous Nuclear Magnetic Resonance Signal in a Pulsed Magnetic Field: Numerical Solutions of Bloch Equations under Radio Frequency Irradiation

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

A novel nuclear magnetic resonance (NMR) experimental scheme is presented, which has promising applications in pulsed magnetic fields. The experimental scheme, broadband continuous wave NMR (BB-CW-NMR), is validated with numerical solutions of Bloch equations in pulsed fields under broadband continuous radio frequency (RF) irradiation. Furthermore, the influence of experimental parameters such as relaxation times and RF power on the waveform and amplitude of the broadband continuous NMR signal is analyzed briefly. To verify the reliability of the numerical calculation program, numerical solutions of the Bloch equations under the irradiation of RF pulse sequence are given. There is good agreement between simulation and expected experimental results, indicating the validity of the program. Finally, we estimate the amplitude of the NMR signal, the level of noise, and RF interference in a BB-CW-NMR experiment. The results of simulation and analysis demonstrate that the BB-CW-NMR experiment scheme is feasible under the conditions of appropriate relaxation times and RF power if the leakage of the RF field into the receiver coil is reduced by at least a factor of 106.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C.P. Slichter, Principles of Magnetic Resonance (Springer, New York, 1996)

    Google Scholar 

  2. J.S. Brooks, J.E. Crow, W.G. Moulton, J. Phys. Chem. Solids 59, 569 (1998)

    Article  ADS  Google Scholar 

  3. J. Haase, D. Eckert, H. Siegel, H. Eschrig, K.-H. Müller, F. Steglich, Concepts Magn. Reson. 19B, 9–13 (2003)

    Article  Google Scholar 

  4. J. Haase, Appl. Magn. Reson. 27, 297–302 (2004)

    Article  Google Scholar 

  5. J. Haase, M.B. Kozlov, A.G. Webb, B. Buechner, H. Eschrig, K.-H. Müller, H. Siegel, Solid State Nucl. Magn. Reson. 27, 206–208 (2005)

    Article  Google Scholar 

  6. G.-Q. Zheng, K. Katayama, M. Kandatsu, N. Nishihagi, S. Kimura, M. Hagiwara, K. Kindo, J. Low Temp. Phys. 159, 280–283 (2010)

    Article  ADS  Google Scholar 

  7. E. Abou-Hamad, P. Bontemps, G.L.J.A. Rikken, Solid State Nucl. Magn. Reson. 40, 42–44 (2011)

    Article  Google Scholar 

  8. B. Meier, S. Greiser, J. Haase, T. Hermannsdoerfer, F. Wolff-Fabris, J. Wosnitza, J. Magn. Reson. 210, 1–6 (2011)

    Article  ADS  Google Scholar 

  9. F. Weickert, B. Meier, S. Zherlitsyn, T. Herrmannsdorfer, R. Daou, M. Nicklas, J. Haase, F. Steglich, J. Wosnitza, Meas. Sci. Technol. 23, 105001 (2012)

    Article  ADS  Google Scholar 

  10. D. Murphree, S.B. Cahn, D. Rahmlow, D. DeMille, J. Magn. Reson. 188, 160–167 (2007)

    Article  ADS  Google Scholar 

  11. E. Scott, J. Stettler, J.A. Reimer, J. Magn. Reson. 221, 117–119 (2012)

    Article  ADS  Google Scholar 

  12. F. Bloch, Phys. Rev. 70, 460–474 (1946)

    Article  ADS  Google Scholar 

  13. H.C. Torrey, Phys. Rev. 76, 1059–1068 (1949)

    Article  MATH  ADS  Google Scholar 

  14. P.K. Madhu, Anil Kumar. J. Magn. Reson. A 114, 201–212 (1995)

    Article  ADS  Google Scholar 

  15. J.D. Roberts, Concepts Magn. Reson. 3, 27–45 (1991)

    Article  Google Scholar 

  16. A.D. Bain, C.K. Anand, Z. Nie, J. Magn. Reson. 206, 227–240 (2010)

    Article  ADS  Google Scholar 

  17. A. Abragam, The Principles of Nuclear Magnetism, (Oxford University Press, London, 1961), pp. 53-55, 425

  18. J.P. Korb, R.G. Bryant, Magn. Reson. Med. 48, 21–26 (2002)

    Article  Google Scholar 

  19. W.D. Rooney, G. Johnson, X. Li, E.R. Cohen, S.G. Kim, K. Ugurbil, C.S. Springer, Magn. Reson. Med. 57, 308–318 (2007)

    Article  Google Scholar 

  20. K. Murase, N. Tanki, Magn. Reson. Imaging 29, 126–131 (2011)

    Article  ADS  Google Scholar 

  21. F. Bloch, W.W. Hansen, M. Packard, Phys. Rev. 70, 474 (1946)

    Article  ADS  Google Scholar 

  22. E. Dalgaard, E. Auken, J.J. Larsen, Geophys. J. Int. 191, 88–100 (2012)

    Article  ADS  Google Scholar 

  23. S.M.M. Martens, J.W.M. Bergmans, S.G.Oei, in Proc. of the 25th Symposium on Information Theory in the Benelux, 49–56 (2004)

  24. V.V. Krishnan, N. Murali, Prog. Nucl. Magn. Reson. Spectrosc. 68, 41–57 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (Grant Nos. 10975056 and 11475067).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjun Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Ma, H. & De Yu Broadband Continuous Nuclear Magnetic Resonance Signal in a Pulsed Magnetic Field: Numerical Solutions of Bloch Equations under Radio Frequency Irradiation. Appl Magn Reson 47, 41–52 (2016). https://doi.org/10.1007/s00723-015-0727-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-015-0727-7

Keywords

Navigation