Skip to main content

Advertisement

Log in

Accuracy of Contrast Agent Quantification in MRI: A Comparison Between Two k-space Sampling Schemes

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Dynamic contrast-enhanced magnetic resonance imaging (DCE MRI) plays an important role in many applications, such as perfusion imaging in oncology. Several aspects of data acquisition should be taken into account when developing protocols for DCE MRI both to facilitate integration of results from multiple institutions and to ensure that the data reflect the underlying physiology as accurately as possible.In this study we focused on the trade-off between accurate contrast agent (CA) quantification ad temporal resolution. The commonly used spoiled gradient-echo k-space scheme known as Fast Low Angle SHot (FLASH) can suffer from low temporal resolution if a large field of view must be scanned. Recently, a k-space under-sampling and data-sharing method known as Time-resolved angiography With Stochastic Trajectories (TWIST) has been proposed to obtain high temporal resolution without sacrificing the spatial resolution. However, the losses in CA quantification have not been analyzed yet.The aim of this study was to evaluate the accuracy of TWIST CA quantification with respect to FLASH.Seven vials containing different Gd-DTPA solutions were prepared. Images were acquired using breast coils and several combinations of the different parameters of the two schemes analyzed. Quantification accuracy has been evaluated in terms of relative error and standard deviation. Also the repeatability for both sequence was evaluated on ten measures.The accuracy of CA quantification with both sequences depends on the specific amount of Gd-DTPA present in the prepared solutions.However, our results show that FLASH and TWIST give comparable accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. G. Brix, W. Semmler, R. Port, J. Comput. Assist. Tomogr. 15, 621628 (1991)

    Article  Google Scholar 

  2. St Lawrence, Ks Lee, J. Cereb. Blood Flow Metab. 18, 1365–1377 (1998)

    Article  Google Scholar 

  3. P.S. Tofts, J. Magn. Reson. Imaging 7, 91101 (1997)

    Article  Google Scholar 

  4. J. Collins, R. Padhani, IEEE Eng. Med. Biol. Magn. 23, 65–83 (2004)

    Article  Google Scholar 

  5. C.K. Kuhl, H.H. Schild, N. Morakkabati, Radiology 236(3), 789–800 (2005)

    Article  Google Scholar 

  6. L. Martincich, F. Montemurro, G. De Rosa, V. Marra, R. Ponzone, S. Cirillo, M. Gatti, N. Biglia, I. Sarotto, P. Sismondi, D. Regge, M. Aglietta, Breast Cancer Res. Treat. 83(1), 67–76 (2004)

    Article  Google Scholar 

  7. L. Martincich, M. Faivre-Pierret, C.M. Zechmann, S. Corcione, H.C. van den Bosch, W.J. Peng, A. Petrillo, K.C. Siegmann, J.T. Heverhagen, P. Panizza, H.B. Gehl, F. Diekmann, F. Pediconi, L. Ma, F.J. Gilbert, F. Sardanelli, P. Belli, M. Salvatore, K.F. Kreitner, C.M. Weiss, C. Zuiani, Radiology 258(2), 396–408 (2011)

    Article  Google Scholar 

  8. G. Brix, F. Kiessling, R. Lucht, S. Darai, K. Wasser, S. Delorme, J. Griebel, Magn. Reson. Med. 52, 420429 (2004)

    Article  Google Scholar 

  9. K. Wasser, S.K. Klein, C. Fink, H. Junkermann, H.P. Sinn, I. Zuna, M.V. Knopp, S. Delorme, Eur. Radiol. 13, 8087 (2003)

    Google Scholar 

  10. E. Henderson, B.K. Rutt, T.Y. Lee, Magn. Reson. Imaging 16(9), 1057–1073 (1998)

    Article  Google Scholar 

  11. M. Aref, J.D. Handbury, J. Xiuquan Ji, S. Aref, E.C. Wiener, Magn. Reson. Imaging 25(1), 14–34 (2007)

    Article  Google Scholar 

  12. W. Huang, X. Li, E.A. Morris, L.A. Tudorica, V.E. Seshan, W.D. Rooney, I. Tagge, Y. Wang, J. Xu, C.S. Springer, Proc. Natl. Acad. Sci. USA 105(46), 17943–17948 (2008)

    Article  ADS  Google Scholar 

  13. M. Bydder, M.D. Robson, Magn. Reson. Med. 53(6), 1393–1401 (2005)

    Article  Google Scholar 

  14. Y. Wu, K.C. Goodrich, H.R. Buswell, G.L. Katzman, D.L. Parker, Magn. Reson. Imaging 22, 1161–1168 (2004)

    Article  Google Scholar 

  15. M.A. Griswold, M. Blaimer, F. Breuer, R.M. Heidemann, M. Mueller, P.M. Jakob, Magn. Reson. Med. 54(6), 1553–1556 (2005)

    Article  Google Scholar 

  16. J.J. van Vaals, M.E. Brummer, W.T. Dixon, H.H. Tuithof, H. Engels, R.C. Nelson, B.M. Gerety, J.L. Chezmar, den J.A. Boer, J. Magn. Reson. Imaging 3(4), 671–675 (1993)

    Article  Google Scholar 

  17. J.E. Bishop, G.E. Santyr, F. Kelcz, D.B. Plewes, J. Magn. Reson. Imaging 7(4), 716–723 (1997)

    Article  Google Scholar 

  18. T. Song, A.F. Laine, Q. Chen, H. Rusinek, L. Bokacheva, R.P. Lim, G. Laub, R. Kroeker, V.S. Lee, Magn. Reson. Med. 61(5), 1242–1248 (2009)

    Article  Google Scholar 

  19. K.H. Herrmann, P.A. Baltzer, M. Dietzel, I. Krumbein, C. Geppert, W.A. Kaiser, J.R. Reichenbach, J. Magn. Reson. Imaging 34(4), 973–982 (2011)

    Article  Google Scholar 

  20. R.M. Mann, R.D. Mus, J. van Zelst, C. Geppert, N. Karssemeijer, B. Platel, Investig. Radiol. 49(9), 579 (2014)

    Article  Google Scholar 

  21. D. Vincensini, V. Dedieu, P.A. Eliat, C. Vincent, C. Bailly, J. de Certaines, F. Joffre, Magn. Reson. Imaging 25(3), 293–302 (2007)

    Article  Google Scholar 

  22. S.B. Donaldson, C.M. West, S.E. Davidson, B.M. Carrington, G. Hutchison, A.P. Jones, S.P. Sourbron, D.L. Buckley, Magn. Reson. Med. 63(3), 691–700 (2010)

    Article  Google Scholar 

  23. A. Haase, J. Frahm, D. Matthaei, W. Hicke, K.D. Merboldt, J. Magn. Reson. 67(2), 258266 (1986)

    Google Scholar 

  24. E.K. Fram, R.J. Herfkens, G.A. Johnson, G.H. Glover, J.P. Karis, A. Shimakawa, T.G. Perkins, N.J. Pelc, Magn. Reson. Imaging 5, 201–208 (1987)

    Article  Google Scholar 

  25. G.J. Stanisz, R.M. Henkelman, Magn. Reson. Med. 44(5), 665–667 (2000)

    Article  Google Scholar 

  26. R.E. Lee, E.B. Welch, J.G. Cobb, T. Sinha, J.C. Gore, T.E. Yankeelov, J Digit. Imaging 22(4), 424–436 (2009)

    Article  Google Scholar 

  27. P.A. Eliat, V. Dedieu, C. Bertino, V. Bout, J. Lacroix, J.M. Constans, B. de Korvin, C. Vincent, C. Bailly, F. Joffre, J. de Certaines, D. Vincensini, Magn. Reson. Imaging 22(4), 475–481 (2004)

    Article  Google Scholar 

  28. C. Hayes, A.R. Padhani, M.O. Leach, NMR Biomed. 15(2), 154–163 (2002)

    Article  Google Scholar 

  29. D. De Naeyer, Y. De Deene, W.P. Ceelen, P. Segers, P. Verdonck, MAGMA 24(2), 51–66 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Sansone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sansone, M., Fusco, R. & Petrillo, A. Accuracy of Contrast Agent Quantification in MRI: A Comparison Between Two k-space Sampling Schemes. Appl Magn Reson 46, 1283–1292 (2015). https://doi.org/10.1007/s00723-015-0718-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-015-0718-8

Keywords

Navigation