Skip to main content
Log in

Firing-Induced Microstructural Properties of Quasi-Diamagnetic Carbonate-Based Porous Ceramics: a 1H NMR Relaxation Correlation Study

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

This study deals with the application of two-dimensional proton nuclear magnetic resonance relaxometry (2D 1H NMR-R) to the characterization of porous ceramics nearly free of magnetic compounds. Different microstructural properties were obtained by firing a diamagnetic mixture of kaolin, calcium, and magnesium carbonate over a wide range of maximum temperatures (600–1100 °C) and firing times at the maximum temperature (soaking times) (0–10 h). The 2D 1H NMR-R method relies on the correlated measurement of 1H longitudinal (T 1) and transverse (T 2) relaxation times of pore-filling water by which the properties of the interconnected pore space may be investigated. In the absence of significant magnetic susceptibility effect due to para- and ferro-magnetic compounds, the 2D 1H NMR-R maps allow studying the conjoint effects on pore size distribution and inter-pore coupling due to the variations in both time and temperature of firing. The NMR experiments were performed with a low-field 1H NMR sensor, which allows non-destructive and in situ analysis. For ceramic specimens fired at 600 and 700 °C, the fraction of smallest pores increases with firing time at the expenses of those with intermediate size. The pore shrinkage occurring at this stage, and likely associated with the transformation of kaolinite in metakaolinite, is affected in a similar way by soaking time and firing temperature, in line with the concept of equivalent firing temperature. At temperatures from 800 to 1100 °C, the structural modifications involving interconnectivity and average pore size are driven primarily by firing temperature and, secondarily, by soaking time. The 2D 1H NMR-R results are confirmed by more traditional, but destructive, mineralogical, and structural analyses like X-ray powder diffraction, helium pycnometry, mercury intrusion porosimetry, and nitrogen adsorption/desorption method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E.C. Hammel, O.L.-R. Ighodaro, O.I. Okoli, Ceram. Int. 40, 15351 (2014)

    Article  Google Scholar 

  2. A.R. Studart, U.T. Gonzenbach, E. Tervoort, L.J. Gauckler, J. Am. Ceram. Soc. 89, 1771 (2006)

    Article  Google Scholar 

  3. L. Simão, O.R.K. Montedo, M.M. da Silva Paula, L. da Silva, R.F. Caldato, M.D. de Mello Innocentini, Mater. Res. 16, 1439 (2013)

    Article  Google Scholar 

  4. B. Velde, I.C. Druc, Archaeological Ceramic Materials: Origin and Utilization (Springer-Verlag, Berlin, 1999)

    Book  Google Scholar 

  5. T. Watson, C.T.P. Chang, Prog. Nucl. Magn. Reson. Spectrosc. 31, 343 (1997)

    Article  Google Scholar 

  6. R.D. Sahnoun, S. Baklouti, Appl. Clay Sci. 83–84, 399 (2013)

    Article  Google Scholar 

  7. F. Presciutti, D. Capitani, A. Sgamellotti, B.G. Brunetti, F. Costantino, S. Viel, A. Segre, J. Phys. Chem. B 109, 22147 (2005)

    Article  Google Scholar 

  8. G.R. Hatfield, K.R. Carduner, J. Mater. Sci. 24, 4209 (1989)

    Article  ADS  Google Scholar 

  9. S.D. Beyea, A. Caprihan, S.J. Glass, A. Di Giovanni, J. Appl. Phys. 94, 935 (2003)

    Article  ADS  Google Scholar 

  10. S.D. Beyea, A. Caprihan, C.F.M. Clewett, S.J. Glass, Appl. Magn. Reson. 22, 175 (2002)

    Article  Google Scholar 

  11. M.J. Lizak, M.S. Conradi, C.G. Fry, J. Magn. Reson. 95, 548 (1991)

    ADS  Google Scholar 

  12. K. Hayashi, K. Kawashima, K. Kose, T. Inouye, J. Phys. D Appl. Phys. 21, 1037 (1988)

    Article  ADS  Google Scholar 

  13. L. Pel, K. Kopinga, G. Bertram, G. Lang, J. Phys. D Appl. Phys. 28, 675 (1995)

    Article  ADS  Google Scholar 

  14. G.H.A. van der Heijden, H.P. Huinink, L. Pel, K. Kopinga, Chem. Eng. Sci. 64, 3010 (2009)

    Article  Google Scholar 

  15. S.L. Codd, S.A. Altobelli, J. Magn. Reson. 163, 16 (2003)

    Article  ADS  Google Scholar 

  16. R.W. Mair, G.P. Wong, D. Hoffmann, M.D. Hürlimann, S. Patz, L.M. Schwartz, R.L. Walsworth, Phys. Rev. Lett. 83, 3324 (1999)

  17. S. Stapf, K.J. Packer, R.G. Graham, J.F. Thovert, P.M. Adler, Phys. Rev. E 58, 6206 (1998)

    Article  ADS  Google Scholar 

  18. J.D. Seymour, P.T. Callaghan, AIChE J. 43, 2096 (1997)

    Article  Google Scholar 

  19. S. Muncaci, C. Mattea, S. Stapf, I. Ardelean, Magn. Reson. Chem. 51, 123 (2013)

    Google Scholar 

  20. M. Gombia, P. Fantazzini, E. Rambaldi, A. Tucci, L. Esposito, G. Timellini, Adv. Eng. Mater. 10, 235 (2008)

    Article  Google Scholar 

  21. C. Casieri, F. De Luca, L. Nodari, U. Russo, C. Terenzi, V. Tudisca, J. Appl. Phys. 112, Article Number 084904 (2012)

  22. V. Tudisca, C. Casieri, F. Demma, M. Dìaz, L. Piñol, C. Terenzi, F. De Luca, J. Archaeol. Sci. 38, 352 (2011)

  23. C. Terenzi, C. Casieri, F. De Luca, Appl. Clay Sci. 53, 517 (2011)

    Article  Google Scholar 

  24. C. Casieri, F. De Luca, L. Nodari, U. Russo, C. Terenzi, Chem. Phys. Lett. 496, 223 (2010)

    Article  ADS  Google Scholar 

  25. C. Terenzi, C. Casieri, A.C. Felici, M. Piacentini, M. Vendittelli, F. De Luca, J. Archaeol. Sci. 37, 1403 (2010)

    Article  Google Scholar 

  26. C. Casieri, C. Terenzi, F. De Luca, J. Appl. Phys. 105, Article Number 034901 (2009)

  27. R.R. Ernst, G. Bodenhausen, A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Oxford University Press, Oxford, 1987)

    Google Scholar 

  28. Y.Q. Song, L. Venkataramanan, M.D. Hürlimann, M. Flaum, P. Frulla, C. Straley, J. Magn. Reson. 154, 261 (2002)

    Article  ADS  Google Scholar 

  29. B. Blümich, J. Perlo, F. Casanova, Prog. Nucl. Magn. Reson. Spectrosc. 52, 197 (2008)

    Article  Google Scholar 

  30. J. Mitchell, L.F. Gladden, T.C. Chandrasekera, E.J. Fordham, Prog. Nucl. Magn. Reson. Spectrosc. 76, 1 (2014)

    Article  Google Scholar 

  31. D. Capitani, V. Di Tullio, N. Proietti, Prog. Nucl. Magn. Reson. Spectrosc. 64, 29 (2011)

    Article  Google Scholar 

  32. P.J. McDonald, J.P. Korb, J. Mitchell, L. Monteilhet, Phys. Rev. E 72, 011409 (2005)

    Article  ADS  Google Scholar 

  33. M.D. Hürlimann, L. Burcaw, Y.Q. Song, J. Colloid Interface Sci. 297, 303 (2005)

    Article  Google Scholar 

  34. K.R. Brownstein, C.E. Tarr, Phys. Rev. A 19, 2446 (1979)

    Article  ADS  Google Scholar 

  35. P. Gillis, S.H. Koening, Magn. Reson. Med. 5, 323 (1987)

    Article  Google Scholar 

  36. V. Anand, G.J. Hirasaki, J. Magn. Reson. 190, 67 (2008)

    Article  ADS  Google Scholar 

  37. J.P. Korb, New J. Phys. 13, Article Number 035016 (2011)

  38. T.R. Bryar, C.J. Daughney, R. Knight, J. Magn. Reson. 142, 74 (2000)

    Article  ADS  Google Scholar 

  39. I. Foley, S.A. Farooqui, R.L. Kleinberg, J. Magn. Reson. A 123, 95 (1996)

    Article  ADS  Google Scholar 

  40. M.D. Hürlimann, J. Magn. Reson. 131, 232 (1998)

    Article  ADS  Google Scholar 

  41. M.H. Cohen, K.S. Mendelson, J. Appl. Phys. 53, 1127 (1982)

    Article  ADS  Google Scholar 

  42. K.R. McCall, D.L. Johnson, R.A. Guyer, Phys. Rev. B 44, 7344 (1991)

    Article  ADS  Google Scholar 

  43. http://www.icdd.com

  44. D.H. Everett, Pure Appl. Chem. 31, 578 (1972)

    Article  Google Scholar 

  45. S. Wolf, Archaeometry 44, 37 (2002)

    Article  Google Scholar 

  46. S. Freyburg, A. Schwarz, J. Eur. Ceram. Soc. 27, 1727 (2007)

    Article  Google Scholar 

  47. M.S. Tite, Archaeometry 11, 131 (1969)

    Article  Google Scholar 

  48. M. Maggetti, Ch. Neururer, D. Ramseyer, Appl. Clay Sci. 53, 500 (2011)

    Article  Google Scholar 

  49. H.-K. Liaw, R. Kulkarni, S. Chen, A.T. Watson, AIChE J. 42, 538 (1996)

    Article  Google Scholar 

  50. J. Ondruška, A. Trnìk, I. Medved, Ceram. Int. 37, 3299 (2011)

  51. K. Traore, T.S. Kabrè, P. Blanchart, Ceram. Int. 29, 377 (2003)

    Article  Google Scholar 

  52. I. Štubňa, T. Kozìk, Ceram. Int. 23, 247 (1997)

  53. B. Cìcel, I. Novák, I. Horváth, Mineralogy and Crystallochemistry of Clays (SAV, Bratislava, 1981)

    Google Scholar 

  54. J. Ondruška, A. Trnìk, L. Vozár, Int. J. Thermophys. 32, 729 (2011)

    Article  ADS  Google Scholar 

  55. M.D. Hurlimann, K.G. Helmer, L.L. Latour, C.H. Sotak, J. Magn. Reson. A 111, 169 (1994)

    Article  ADS  Google Scholar 

  56. G.C. Borgia, R.J.S. Brown, P. Fantazzini, J. Appl. Phys. 82, 4197 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are indebted to M.D. Hürlimann (Schlumberger-Doll Research) for having supplied the 2D Laplace Inversion Software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cinzia Casieri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terenzi, C., Casieri, C., De Luca, F. et al. Firing-Induced Microstructural Properties of Quasi-Diamagnetic Carbonate-Based Porous Ceramics: a 1H NMR Relaxation Correlation Study. Appl Magn Reson 46, 1159–1178 (2015). https://doi.org/10.1007/s00723-015-0701-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-015-0701-4

Keywords

Navigation