Skip to main content
Log in

Choroidal vascularity index in pseudoexfoliation syndrome: a review of the literature

Choroidaler Vaskularitätsindex bei Pseudoexfoliationssyndrom: ein Literaturüberblick

  • review
  • Published:
Spektrum der Augenheilkunde Aims and scope Submit manuscript

Summary

Choroidal thickness and choroidal vascularity index (CVI) appear to be distorted in eyes with pseudoexfoliation (PEX) syndrome. The accumulation of exfoliation material in the inner wall of choroidal vessels has led to the hypothesis that CVI may be affected both in glaucoma patients and individuals suspected of having glaucoma. The use of the optical coherence tomography (OCT) over the past few decades has facilitated the thorough and noninvasive examination of the posterior segment, whereas recent breakthroughs in technology have provided a more in-depth analysis of the choroidal vasculature with the introduction of swept-source (SS) OCT, enhanced-depth imaging (EDI) OCT, en-face OCT, and OCT angiography (OCTA). Choroidal thickness (CT) is a useful tool in clinical research as an indicator of ocular and systemic health. Reduced CT may cause retinal hypoxia and be responsible for the retinal nerve fiber layer (RNFL) abnormalities in PEX syndrome. The choroidal blood flow is probably not affected until the PEX material clinically appears in the intraocular structures. Future studies with a larger number of patients, especially unilateral PEX syndrome, and longer follow-up periods need to be carried out in order to shed more light on the association between PEX syndrome and ocular blood flow and choroidal thickness.

Zusammenfassung

Aderhautdicke und choroidaler Vaskularitätsindex (CVI) scheinen bei Augen mit Pseudoexfoliationssyndrom (PEX) verändert zu sein. Die Ansammlung von Exfoliationsmaterial in der Innenwand von Aderhautgefäßen hat zu der Hypothese geführt, dass der CVI sowohl bei Glaukompatienten als auch bei Personen mit Verdacht auf ein Glaukom verändert sein kann. Die Verwendung der optischen Kohärenztomographie (OCT) hat in den letzten Jahrzehnten die gründliche und nichtinvasive Untersuchung des hinteren Segments erleichtert, während die jüngsten technologischen Durchbrüche mit der Einführung von Swept-Source(SS)-OCT, Enhance-Depth-Imaging(EDI)-OCT, En-Face-OCT und OCT-Angiographie (OCTA) eine tiefergehende Analyse der Aderhautgefäße ermöglicht haben. Die Aderhautdicke (CT) ist als Indikator für die okulare und systemische Gesundheit ein nützliches Instrument in der klinischen Forschung. Eine reduzierte CT kann eine retinale Hypoxie verursachen und für die Anomalien der retinalen Nervenfaserschicht (RNFL) beim PEX-Syndrom verantwortlich sein. Wahrscheinlich wird der choroidale Blutfluss nicht beeinträchtigt, bis das PEX-Material klinisch in den intraokularen Strukturen erscheint. Zukünftige Studien mit einer größeren Anzahl von Patienten, insbesondere dem einseitigen PEX-Syndrom, und längeren Nachbeobachtungszeiten müssen durchgeführt werden, um den Zusammenhang zwischen dem PEX-Syndrom, der okulären Durchblutung und der Aderhautdicke genauer zu erkennen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Schlötzer-Schrehardt U, Naumann GO. Ocular and systemic pseudoexfoliation syndrome. Am J Ophthalmol. 2006;141:921–37.

    Article  PubMed  Google Scholar 

  2. Streeten BW, Li ZY, Wallace RN, Eagle RC Jr, Keshgegian AA. Pseudoexfoliative fibrillopathy in visceral organs of a patient with pseudoexfoliation syndrome. Arch Ophthalmol. 1992;110:1757–62.

    Article  CAS  PubMed  Google Scholar 

  3. Schlötzer-Schrehardt U, von der Mark K, Sakai LY, Naumann GO. Increased extracellular deposition of fibrillin-containing fibrils in pseudoexfoliation syndrome. Invest Ophthalmol Vis Sci. 1997;38:970–84.

    PubMed  Google Scholar 

  4. Schlötzer-Schrehardt UM, Koca MR, Naumann GO, Volkholz H. Pseudoexfoliation syndrome. Ocular manifestation of a systemic disorder? Arch Ophthalmol. 1992;110:1752–6.

    Article  PubMed  Google Scholar 

  5. Mitchell P, Wang JJ, Smith W. Association of pseudoexfoliation syndrome with increased vascular risk. Am J Ophthalmol. 1997;124:685–7.

    Article  CAS  PubMed  Google Scholar 

  6. Helbig H, Schlötzer-Schrehardt U, Noske W, Kellner U, Foerster MH, Naumann GO. Anterior-chamber hypoxia and iris vasculopathy in pseudoexfoliation syndrome. Ger J Ophthalmol. 1994;3:148–53.

    CAS  PubMed  Google Scholar 

  7. Schlötzer-Schrehardt U, Küchle M, Naumann GOH. Electron microscopic identification of pseudoexfoliation material in extrabulbar tissue. Arch Ophthalmol. 1991;109:565–70.

    Article  PubMed  Google Scholar 

  8. Ocakoglu O, Koyluoglu N, Kayiran A, Tamcelik N, Ozkan S. Microvascular blood flow of the optic nerve head and peripapillary retina in unilateral exfoliation syndrome. Acta Ophthalmol Scand. 2004;82:49–53.

    Article  PubMed  Google Scholar 

  9. Dayanir V, Topaloğlu A, Ozsunar Y, Keceli M, Okyay P, Harris A. Orbital blood flow parameters in unilateral pseudoexfoliation syndrome. Int Ophthalmol. 2009;29:27–32.

    Article  PubMed  Google Scholar 

  10. Yüksel N, Karabaş VL, Arslan A, Demirci A, Cağlar Y. Ocular hemodynamics in pseudoexfoliation syndrome and pseudoexfoliation glaucoma. Ophthalmology. 2001;108:1043–9.

    Article  PubMed  Google Scholar 

  11. Cao J, McLeod S, Merges CA, Lutty GA. Choriocapillaris degeneration and related pathologic changes in human diabetic eyes. Arch Ophthalmol. 1998;116:589–97.

    Article  CAS  PubMed  Google Scholar 

  12. Margolis R, Spaide RF. A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes. Am J Ophthalmol. 2009;147:811–5.

    Article  PubMed  Google Scholar 

  13. Linsenmeier RA, Padnick-Silver L. Metabolic dependence of photoreceptors on the choroid in the normal and detached retina. Invest Ophthalmol Vis Sci. 2000;41(10):3117–23.

    CAS  PubMed  Google Scholar 

  14. Nickla DL, Wallman J. The multifunctional choroid. Prog Retin Eye Res. 2010;29(2):144–68.

    Article  PubMed  Google Scholar 

  15. Tan KA, Gupta P, Agarwal A, et al. State of science: choroidal thickness and systemic health. Surv Ophthalmol. 2016;61(5):566–81.

    Article  PubMed  Google Scholar 

  16. Sezer T, Altınışık M, Koytak İA, et al. The choroid and optical coherence tomography. Turk J Ophthalmol. 2016;46(1):30–7.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Laviers H, Zambarakji H. Enhanced depth imaging-OCT of the choroid: a review of the current literature. Graefes Arch Clin Exp Ophthalmol. 2014;252(12):1871–83.

    Article  CAS  PubMed  Google Scholar 

  18. Lindner M, Bezatis A, Czauderna J, et al. Choroidal thickness in geographic atrophy secondary to age-related macular degeneration. Invest Ophthalmol Vis Sci. 2015;56(2):875–82.

    Article  PubMed  Google Scholar 

  19. Young M, Fallah N, Forooghian F. Choroidal degeneration in birdshot chorioretinopathy. Retina. 2015;35(4):798–802.

    Article  CAS  PubMed  Google Scholar 

  20. Kim JT, Lee DH, Joe SG, et al. Changes in choroidal thickness in relation to the severity of retinopathy and macular edema in type 2 diabetic patients. Invest Ophthalmol Vis Sci. 2013;54(5):3378–84.

    Article  PubMed  Google Scholar 

  21. Wong IY, Wong RL, Zhao P, et al. Choroidal thickness in relation to hypercholesterolemia on enhanced depth imaging optical coherence tomography. Retina. 2013;33(2):423–8.

    Article  PubMed  Google Scholar 

  22. Ahn SJ, Woo SJ, Park KH. Retinal and choroidal changes with severe hypertension and their association with visual outcome. Invest Ophthalmol Vis Sci. 2014;55(12):7775–85.

    Article  PubMed  Google Scholar 

  23. Agrawal R, Gupta P, Tan KA, et al. Choroidal vascularity index as a measure of vascular status of the choroid: measurements in healthy eyes from a population-based study. Sci Rep. 2016;6:21090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sohrab M, Wu K, Fawzi AA. A pilot study of morphometric analysis of choroidal vasculature in vivo, using en face optical coherence tomography. PLoS One. 2012;7(11):e48631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sonoda S, Sakamoto T, Yamashita T, et al. Choroidal structure in normal eyes and after photodynamic therapy determined by binarization of optical coherence tomographic images. Invest Ophthalmol Vis Sci. 2014;55(6):3893–9.

    Article  PubMed  Google Scholar 

  26. Sonoda S, Sakamoto T, Yamashita T, et al. Luminal and stromal areas of choroid determined by binarization method of optical coherence tomographic images. Am J Ophthalmol. 2015;159(6):1123–1131.e1.

    Article  PubMed  Google Scholar 

  27. Branchini LA, Adhi M, Regatieri CV, et al. Analysis of choroidal morphologic features and vasculature in healthy eyes using spectral-domain optical coherence tomography. Ophthalmology. 2013;120(9):1901–8.

    Article  PubMed  Google Scholar 

  28. Agrawal R, Salman M, Tan KA, et al. Choroidal vascularity index (CVI)—a novel optical coherence tomography parameter for monitoring patients with panuveitis? PLoS ONE. 2016;11(1):e146344.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Singh SR, Vupparaboina KK, Goud A, et al. Choroidal imaging biomarkers. Surv Ophthalmol. 2019;64(3):312–33.

    Article  PubMed  Google Scholar 

  30. Iovino C, Pellegrini M, Bernabei F, et al. Choroidal vascularity index: an in-depth analysis of this novel optical coherence tomography parameter. J Clin Med. 2020;9(2):595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Piejko P, Ścisłowicz A, Nowak M, et al. Zespół pseudoeksfoliacji (PEX) [Pseudoexfoliation syndrom]. Pol Merkur Lekarski. 2018;45(268):164–7.

    PubMed  Google Scholar 

  32. Schweitzer C. Syndrome pseudo-exfoliatif et glaucome exfoliatif [Pseudoexfoliation syndrome and pseudoexfoliation glaucoma]. J Fr Ophtalmol. 2018;41(1):78–90.

    Article  CAS  PubMed  Google Scholar 

  33. Dewundara S, Pasquale LR. Exfoliation syndrome: a disease with an environmental component. Curr Opin Ophthalmol. 2015;26(2):78–81.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ritch R, Schlötzer-Schrehardt U, Konstas AG. Why is glaucoma associated with exfoliation syndrome? Prog Retin Eye Res. 2003;22(3):253–75.

    Article  PubMed  Google Scholar 

  35. Dhingra D, Thattaruthody F, Pandav SS. Pseudoexfoliative zonulopathy. J Glaucoma. 2019; https://doi.org/10.1097/IJG.0000000000001373.

    Article  PubMed  Google Scholar 

  36. Shingleton BJ, Heltzer J, O’Donoghue MW. Outcomes of phacoemulsification in patients with and without pseudoexfoliation syndrome. J Cataract Refract Surg. 2003;29(6):1080–6.

    Article  PubMed  Google Scholar 

  37. Davis D, Brubaker J, Espandar L, et al. Late in-the-bag spontaneous intraocular lens dislocation: evaluation of 86 consecutive cases. Ophthalmology. 2009;116(4):664–70.

    Article  PubMed  Google Scholar 

  38. Prata TS, Rozenbaum I, de Moraes CG, Lima VC, Liebmann J, Ritch R. Retinal vascular occlusions occur more frequently in the more affected eye in exfoliation syndrome. Eye (Lond). 2010;24(4):658–62.

    Article  CAS  PubMed  Google Scholar 

  39. Ritch R, Schlötzer-Schrehardt U. Exfoliation syndrome. Surv Ophthalmol. 2001;45(4):265–315.

    Article  CAS  PubMed  Google Scholar 

  40. Cursiefen C, Hammer T, Küchle M, et al. Pseudoexfoliation syndrome in eyes with ischemic central retinal vein occlusion. A histopathologic and electron microscopic study. Acta Ophthalmol Scand. 2001;79(5):476–8.

    Article  CAS  PubMed  Google Scholar 

  41. Dagel T, Afsar B, Sag AA, et al. Noninvasive optical coherence tomography imaging correlates with anatomic and physiologic end-organ changes in healthy normotensives with systemic blood pressure variability. Blood Press Monit. 2020;25(2):89–94.

    Article  PubMed  Google Scholar 

  42. Jaisankar D, Raman R, Sharma HR, et al. Choroidal and retinal anatomical responses following systemic corticosteroid therapy in Vogt-Koyanagi-Harada disease using swept-source optical coherence tomography. Ocul Immunol Inflamm. 2019;27(2):235–43.

    Article  PubMed  Google Scholar 

  43. Kim M, Kim RY, Park YH. Choroidal vascularity index and choroidal thickness in human leukocyte antigen-B27-associated uveitis. Ocul Immunol Inflamm. 2019;27(8):1280–7.

    Article  CAS  PubMed  Google Scholar 

  44. Pellegrini M, Veronese C, Bernabei F, et al. Choroidal vascular changes in multiple evanescent white dot syndrome. Ocul Immunol Inflamm. 2021;29(2):340–5.

    Article  PubMed  Google Scholar 

  45. Invernizzi A, Benatti E, Cozzi M, et al. Choroidal structural changes correlate with neovascular activity in neovascular age related macular degeneration. Invest Ophthalmol Vis Sci. 2018;59(10):3836–41.

    Article  CAS  PubMed  Google Scholar 

  46. Yang J, Wang E, Yuan M, et al. Three-dimensional choroidal vascularity index in acute central serous chorioretinopathy using swept-source optical coherence tomography. Graefes Arch Clin Exp Ophthalmol. 2020;258(2):241–7.

    Article  PubMed  Google Scholar 

  47. Wei X, Kumar S, Ding J, et al. Choroidal structural changes in smokers measured using choroidal vascularity index. Invest Ophthalmol Vis Sci. 2019;60(5):1316–20.

    Article  PubMed  Google Scholar 

  48. Kim M, Choi SY, Park YH. Quantitative analysis of retinal and choroidal microvascular changes in patients with diabetes. Sci Rep. 2018;8(1):12146.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Park Y, Cho KJ. Choroidal vascular index in patients with open angle glaucoma and preperimetric glaucoma. PLoS ONE. 2019;14(3):e213336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pellegrini M, Giannaccare G, Bernabei F, et al. Choroidal vascular changes in arteritic and nonarteritic anterior ischemic optic neuropathy. Am J Ophthalmol. 2019;205:43–9.

    Article  PubMed  Google Scholar 

  51. Simsek M, Inam O, Sen E, Elgin U. Peripapillary and macular choroidal vascularity index in patients with clinically unilateral pseudoexfoliation syndrome. Eye (Lond). 2021;35(6):1712–20. https://doi.org/10.1038/s41433-020-01171-9

    Article  PubMed  Google Scholar 

  52. Simsek M, Inam O, Sen E, Elgin U. Analysis of the choroidal vascularity in asymmetric pseudoexfoliative glaucoma using optical coherence tomography-based image binarization. Eye (Lond). 2021;36(8):1615–1622. https://doi.org/10.1038/s41433-021-01700-0.

    Article  PubMed  Google Scholar 

  53. Ozcelik Kose A, Imamoglu S, Balci S, Yenerel NM. Comparison of choroidal vascularity index in patients with pseudoexfoliation glaucoma, pseudoexfoliation syndrome, and healthy controls. Curr Eye Res. 2022;47(1):154–160. https://doi.org/10.1080/02713683.2021.1962358

    Article  CAS  PubMed  Google Scholar 

  54. Karslioglu MZ, Kesim C, Yucel O, et al. Choroidal vascularity index in pseudoexfoliative glaucoma. Int Ophthalmol. 2021;41(12):4197–208.

    Article  PubMed  Google Scholar 

  55. No authors listed. European glaucoma society terminology and guidelines for glaucoma, 4th edition—chapter 2: classification and terminology supported by the EGS foundation: part 1: foreword; introduction; glossary; chapter 2 classification and terminology. Br J Ophthalmol. 2017;101:73–127.

    Article  Google Scholar 

  56. Schlötzer-Schrehardt U, Naumann GO. Ocular and systemic pseudoexfoliation syndrome. Am J Ophthalmol. 2006;141(5):921–37.

    Article  PubMed  Google Scholar 

  57. Mitchell P, Wang JJ, Smith W. Association of pseudoexfoliation syndrome with increased vascular risk. Am J Ophthalmol. 1997;124(5):685–7.

    Article  CAS  PubMed  Google Scholar 

  58. Mistlberger A, Gruchmann M, Hitzl W, Grabner G. Pulsatile ocular blood flow in patients with pseudoexfoliation. Int Ophthalmol. 2001;23(4–6):337–42.

    Article  CAS  PubMed  Google Scholar 

  59. Scullica L, Buceti R, Castagna I, Ferreri G, Trombetta JJ. Functional aspects of pseudoexfoliation: physiopathological features. New Trends Ophthalmol. 1993;8:163–8.

    Google Scholar 

  60. Repo LP, Teräsvirta ME, Koivisto KJ. Generalized transluminance of the iris and the frequency of the pseudoexfoliation syndrome in the eyes of transient ischemic attack patients. Ophthalmology. 1993;100(3):352–5.

    Article  CAS  PubMed  Google Scholar 

  61. Cursiefen C, Hammer T, Küchle M, Naumann GO, Schlötzer-Schrehardt U. Pseudoexfoliation syndrome in eyes with ischemic central retinal vein occlusion. A histopathologic and electron microscopic study. Acta Ophthalmol Scand. 2001;79(5):476–8.

    Article  CAS  PubMed  Google Scholar 

  62. Helbig H, Schlötzer-Schrehardt U, Noske W, Kellner U, Foerster MH, Naumann GO. Anterior-chamber hypoxia and iris vasculopathy in pseudoexfoliation syndrome. Ger J Ophthalmol. 1994;3(3):148–53.

    CAS  PubMed  Google Scholar 

  63. Yüksel N, Anik Y, Kiliç A, Demirci A, Cağlar Y. Cerebrovascular blood flow velocities in pseudoexfoliation. Graefes Arch Clin Exp Ophthalmol. 2006;244(3):316–21.

    Article  PubMed  Google Scholar 

  64. Manjunath V, Goren J, Fujimoto JG, Duker JS. Analysis of choroidal thickness in age-related macular degeneration using spectral-domain optical coherence tomography. Am J Ophthalmol. 2011;152(4):663–8.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Polska E, Polak K, Luksch A, Fuchsjager-Mayrl G, Petternel V, Findl O, et al. Twelve hour reproducibility of choroidal blood flow parameters in healthy subjects. Br J Ophthalmol. 2004;88(4):533–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Branchini L, Regatieri CV, Flores-Moreno I, Baumann B, Fujimoto JG, Duker JS. Reproducibility of choroidal thickness measurements across the three spectral domain optical coherence tomography systems. Ophthalmology. 2012;119(1):119–23.

    Article  PubMed  Google Scholar 

  67. Fong AH, Li KK, Wong D. Choroidal evaluation using enhanced depth imaging spectral-domain optical coherence tomography in Vogt-Koyanagi-Harada disease. Retina. 2011;31(3):502–9.

    Article  PubMed  Google Scholar 

  68. Imamura Y, Fujiwara T, Margolis R, et al. Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy. Retina. 2009;29(10):1469–73.

    Article  PubMed  Google Scholar 

  69. Kubota T, Jonas JB, Naumann GO. Decreased choroidal thickness in eyes with secondary angle closure glaucoma. An aetiological factor for deep retinal changes in glaucoma? Br J Ophthalmol. 1993;77(7):430–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Esmaeelpour M, Považay B, Hermann B, et al. Mapping choroidal and retinal thickness variation in type 2 diabetes using three-dimensional 1060-nm optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52(8):5311–6.

    Article  PubMed  Google Scholar 

  71. Eroglu FC, Asena L, Simsek C, et al. Evaluation of choroidal thickness using enhanced depth imaging by spectral-domain optical coherence tomography in patients with pseudoexfoliation syndrome. Eye (Lond). 2015;29(6):791–6.

    Article  CAS  PubMed  Google Scholar 

  72. Fujiwara T, Imamura Y, Margolis R, Slakter JS, Spaide RF. Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes. Am J Ophthalmol. 2009;148(3):445–50.

    Article  PubMed  Google Scholar 

  73. Sogawa K, Nagaoka T, Takahashi A, Tanano I, Tani T, Ishibazawa A, et al. Relationship between choroidal thickness and choroidal circulation in healthy young subjects. Am J Ophthalmol. 2012;153(6):1129–32.

    Article  PubMed  Google Scholar 

  74. Vance SK, Imamura Y, Freund KB. The effects of sildenafil citrate on choroidal thickness as determined by enhanced depth imaging optical coherence tomography. Retina. 2011;31(2):332–5.

    Article  CAS  PubMed  Google Scholar 

  75. Kim DY, Silverman RH, Chan RV, Khanifar AA, Rondeau M, Lloyd H, et al. Measurement of choroidal perfusion and thickness following systemic sildenafil (Viagra(®)). Acta Ophthalmol. 2013;91(2):183–8.

    Article  CAS  PubMed  Google Scholar 

  76. Sizmaz S, Küçükerdönmez C, Pinarci EY, Karalezli A, Canan H, Yilmaz G. The effect of smoking on choroidal thickness measured by optical coherence tomography. Br J Ophthalmol. 2013;97:601–14.

    Article  PubMed  Google Scholar 

  77. Hammer T, Schlötzer-Schrehardt U, Naumann GO. Unilateral or asymmetric pseudoexfoliation syndrome? An ultrastructual study. Arch Ophthalmol. 2001;119(7):1023–31.

    Article  CAS  PubMed  Google Scholar 

  78. Sibour G, Finazzo C, Boles Carenini A. Monolateral pseudoexfoliatio capsulae: a study of choroidal blood flow. Acta Ophthalmol Scand Suppl. 1997;224:13–4.

    Google Scholar 

  79. Ulaş F, Doğan Ü, Keleş A, et al. Evaluation of choroidal and retinal thickness measurements using optical coherence tomography in non-diabetic haemodialysis patients. Int Ophthalmol. 2013;33(5):533–9.

    Article  PubMed  Google Scholar 

  80. Dayanir V, Topaloğlu A, Ozsunar Y, et al. Orbital blood flow parameters in unilateral pseudoexfoliation syndrome. Int Ophthalmol. 2009;29(1):27–32.

    Article  PubMed  Google Scholar 

  81. Yüksel N, Karabaş VL, Arslan A, et al. Ocular hemodynamics in pseudoexfoliation syndrome and pseudoexfoliation glaucoma. Ophthalmology. 2001;108(6):1043–9.

    Article  PubMed  Google Scholar 

  82. Detorakis ET, Achtaropoulos AK, Drakonaki EE, et al. Hemodynamic evaluation of the posterior ciliary circulation in exfoliation syndrome and exfoliation glaucoma. Graefes Arch Clin Exp Ophthalmol. 2007;245(4):516–21.

    Article  PubMed  Google Scholar 

  83. Maul EA, Friedman DS, Chang DS, et al. Choroidal thickness measured by spectral domain optical coherence tomography: factors affecting thickness in glaucoma patients. Ophthalmology. 2011;118(8):1571–9.

    Article  PubMed  Google Scholar 

  84. Manjunath V, Goren J, Fujimoto JG, et al. Analysis of choroidal thickness in age-related macular degeneration using spectral-domain optical coherence tomography. Am J Ophthalmol. 2011;152(4):663–8.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Goktas S, Sakarya Y, Ozcimen M, et al. Choroidal thinning in pseudoexfoliation syndrome detected by enhanced depth imaging optical coherence tomography. Eur J Ophthalmol. 2014;24(6):879–84.

    Article  PubMed  Google Scholar 

  86. Bayhan HA, Bayhan SA, Can İ. Evaluation of the macular choroidal thickness using spectral optical coherence tomography in pseudoexfoliation glaucoma. J Glaucoma. 2016;25(2):184–7.

    Article  PubMed  Google Scholar 

  87. Zengin MO, Cinar E, Karahan E, et al. Choroidal thickness changes in patients with pseudoexfoliation syndrome. Int Ophthalmol. 2015;35(4):513–7.

    Article  PubMed  Google Scholar 

  88. Rao A. Clinical and optical coherence tomography features in unilateral versus bilateral pseudoexfoliation syndrome. J Ophthalmic Vis Res. 2012;7:197–202.

    PubMed  PubMed Central  Google Scholar 

  89. Yüksel N, Altintaş O, Celik M, et al. Analysis of retinal nerve fiber layer thickness in patients with pseudoexfoliation syndrome using optical coherence tomography. Ophthalmologica. 2007;221:299–304.

    Article  PubMed  Google Scholar 

  90. Vergados A, Papaconstantinou D, Diagourtas A, Panagiotis GT, Vergados I, Georgalas I. Correlation Between optic nerve head parameters, RNFL, and CCT in patients with bilateral pseudoexfoliation using HRT-III. Semin Ophthalmol. 2015;30:44–52.

    Article  PubMed  Google Scholar 

  91. Cankaya AB, Beyazyildiz E. Scanning laser ophtalmoscopic parameters of eyes with exfoliation syndrome. Jpn J Ophthalmol. 2010;54:300–4.

    Article  PubMed  Google Scholar 

  92. Mohamed MM. Detection of early glaucomatous damage in pseudo exfoliation syndrome by assessment of retinal nerve fiber layer thickness. Middle East Afr J Ophthalmol. 2009;16:141–5.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Ozge G, Koylu MT, Mumcuoglu T, Gundogan FC, Ozgonul C, Ayyildiz O, Kucukevcilioglu M. Evaluation of retinal nerve fiber layer thickness and choroidal thickness in pseudoexfoliative glaucoma and pseudoexfoliative syndrome. Postgrad Med. 2016;128(4):444–8.

    Article  PubMed  Google Scholar 

  94. Demircan S, Yılmaz U, Küçük E, et al. The effect of pseudoexfoliation syndrome on the retinal nerve fiber layer and choroid thickness. Semin Ophthalmol. 2017;32(3):341–7.

    Article  PubMed  Google Scholar 

  95. Çınar E, Yüce B, Aslan F. Retinal and choroidal vascular changes in eyes with pseudoexfoliation syndrome: a comparative study using optical coherence tomography angiography. Balkan Med J. 2019;37(1):9–14.

    PubMed  PubMed Central  Google Scholar 

  96. Freiberg FJ, Pfau M, Wons J, et al. Optical coherence tomography angiography of the foveal avascular zone in diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 2016;254:1051–8.

    Article  CAS  PubMed  Google Scholar 

  97. Wons J, Pfau M, Wirth MA, et al. Optical coherence tomography angiography of the foveal avascular zone in retinal vein occlusion. Ophthalmologica. 2016;235:195–202.

    Article  PubMed  Google Scholar 

  98. Bleich S, Roedl J, Von Ahsen N, Schlötzer-Schrehardt U, Reulbach U, Beck G, et al. Elevated homocysteine levels in aqueous humor of patients with pseudoexfoliation glaucoma. Am J Ophthalmol. 2004;138:162–4.

    Article  CAS  PubMed  Google Scholar 

  99. Janciauskiene S, Krakau T. Alzheimer’s peptide: a possible link between glaucoma, exfoliation syndrome and Alzheimer’s disease. Acta Ophthalmol Scand. 2001;79:328–9.

    Article  CAS  PubMed  Google Scholar 

  100. Koliakos GG, Konstas AG, Schlötzer-Schrehardt U, Hollo G, Mitova D, Kovatchev D, et al. Endothelin‑1 concentration is increased in the aqueous humour of patients with exfoliation syndrome. Br J Ophthalmol. 2004;88:523–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kotikoski H, Moilanen E, Vapaatalo H, Aine E. Biochemical markers of the L‑arginine-nitric oxide pathway in the aqueous humour in glaucoma patients. Acta Ophthalmol Scand. 2002;80:191–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the planning, research, and writing of the final manuscript, as well as reviewing and rewriting of the revised version.

Corresponding author

Correspondence to Dimitrios Kalogeropoulos MD, MSc, PhD.

Ethics declarations

Conflict of interest

D. Kalogeropoulos, G. Vartsakis, G.A. Moustafa, C. Kalogeropoulos, S.W. Ch’ng, C. Pappa, K. Bassilious, and V.C.T. Sung declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Availability of data and material

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalogeropoulos, D., Vartsakis, G., Moustafa, G.A. et al. Choroidal vascularity index in pseudoexfoliation syndrome: a review of the literature. Spektrum Augenheilkd. 37, 114–123 (2023). https://doi.org/10.1007/s00717-022-00529-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00717-022-00529-6

Keywords

Schlüsselwörter

Navigation