Skip to main content
Log in

Study of foveal avascular zone by OCTA before and after idiopathic epiretinal membrane removal

Untersuchung der fovealen avaskulären Zone mittels OCTA vor und nach Entfernung idiopathischer epiretinaler Membranen

  • Vitreoretinal Disorders and Vitrectomy
  • Published:
Spektrum der Augenheilkunde Aims and scope Submit manuscript

Summary

Background

The aim of this study was to determine the size of the foveal avascular zone (FAZ) by optical coherence tomography angiography (OCTA) after surgery for an idiopathic epiretinal membrane (ERM).

Methods

This study comprised a retrospective, observational case series. In all, 17 eyes of 17 patients with an idiopathic ERM were studied. Pars plana vitrectomy was performed with internal limiting membrane (ILM) peeling. The area of the superficial FAZ and the central macular thickness were determined by OCTA. Retinal sensitivity was measured by microperimetry.

Results

The size of the preoperative FAZ was difficult to determine because of the poor images of the capillary network. The size of the FAZ was smaller than that of the control eyes at all time points (p < 0.001). There was a significant inverse correlation between the area of the postoperative FAZ and the CMT (r = −0.480, p = 0.048 at 3 months; r = −0.565, p = 0.018 at 6 months; r = −0.534, p = 0.027 at 12 months), and between the area of the FAZ and retinal sensitivity (r = −0.622, p = 0.008 at 3 months; r = −0.578, p = 0.015 at 6 months), postoperatively.

Conclusion

The significantly small FAZ after ERM surgery indicates a macular deformity caused by a contraction of the ERM. This change persisted for at least 12 months after the surgery.

Zusammenfassung

Hintergrund

Ziel der vorliegenden Studie war es, die Größe der fovealen avaskulären Zone (FAZ) mittels optischer Kohärenztomographie-Angiographie („optical coherence tomography angiography“, OCTA) nach Operation wegen einer idiopathischen epiretinalen Membran (ERM) zu ermitteln.

Methodik

Dieser Ansatz umfasste eine retrospektive Beobachtungsstudie i. S. einer Fallserie. Insgesamt wurden 17 Augen von 17 Patienten mit idiopathischer ERM untersucht. Es wurde eine Pars-plana-Vitrektomie mit Ablösen der inneren Grenzmembran („inner limiting membrane“, ILM) durchgeführt. Unter Einsatz der OCTA wurde der Bereich der oberflächlichen FAZ und die zentrale Makuladicke („central macular thickness“, CMT) bestimmt. Die Mikroperimetrie diente der Erfassung der retinalen Sensitivität.

Ergebnisse

Die Größe der präoperativen FAZ war wegen der schlechten Qualität der Bilder des kapillaren Netzes schwierig zu ermitteln. Zu allen Zeitpunkten war die FAZ-Größe der untersuchten Patientengruppe geringer als die der Kontrollaugen (p < 0,001). Es bestand eine signifikante inverse Korrelation zwischen dem Bereich der postoperativen FAZ und der zentralen Makuladicke (r = −0,480; p = 0,048 nach 3 Monaten; r = −0,565; p = 0,018 nach 6 Monaten; r = −0,534; p = 0,027 nach 12 Monaten), und zwischen dem Bereich der FAZ und der retinalen Sensitivität (r = −0,622; p = 0,008 nach 3 Monaten; r = −0,578; p = 0,015 nach 6 Monaten) postoperativ.

Schlussfolgerung

Die in signifikanter Weise kleinere FAZ nach der ERM-Operation wies auf eine Makuladeformität hin, die durch eine Kontraktion der ERM bedingt ist. Diese Änderung bestand mindestens 12 Monate nach der Operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Smiddy WE, Maguire AM, Green WR, et al. Idiopathic epiretinal membranes. Ultrastructural characteristics and clinicopathologic correlation. Ophthalmology. 1989;96(6):811–20. https://doi.org/10.1016/S0161-6420(89)32811-9. discussion 821.

    Article  CAS  PubMed  Google Scholar 

  2. Jia Y, Tan O, Tokayer J, et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express. 2012;20(4):4710–25. https://doi.org/10.1364/OE.20.004710.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Huang Y, Zhang Q, Thorell MR, et al. Swept-source OCT angiography of the retinal vasculature using intensity differentiation-based optical microangiography algorithms. Ophthalmic Surg Lasers Imaging Retina. 2014;45(5):382–9. https://doi.org/10.3928/23258160-20140909-08.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jia Y, Bailey ST, Hwang TS, et al. Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye. Proc Natl Acad Sci USA. 2015;112(18):E2395–E402. https://doi.org/10.1073/pnas.1500185112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. de Carlo TE, Chin AT, Bonini Filho MA, et al. Detection of Microvascular changes in eyes of patients with diabetes but not clinical diabetic retinopathy using optical coherence tomography angiography. Retina. 2015;35(11):2364–70. https://doi.org/10.1097/IAE.0000000000000882.

    Article  PubMed  Google Scholar 

  6. Ishibazawa A, Nagaoka T, Takahashi A, et al. Optical coherence tomography angiography in diabetic retinopathy: a prospective pilot study. Am J Ophthalmol. 2015;160(1):35–44e.1. https://doi.org/10.1016/j.ajo.2015.04.021.

    Article  PubMed  Google Scholar 

  7. Suzuki N, Hirano Y, Yoshida M, et al. Microvascular abnormalities on optical coherence tomography angiography in macular edema associated with branch retinal vein occlusion. Am J Ophthalmol. 2015;161:126–132.e1. https://doi.org/10.1016/j.ajo.2015.09.038.

    Article  PubMed  Google Scholar 

  8. Kashani AH, Lee SY, Moshfeghi A, et al. Optical coherence tomography angiography of retinal venous occlusion. Retina. 2015;35(11):2323–31. https://doi.org/10.1097/IAE.0000000000000811.

    Article  PubMed  Google Scholar 

  9. de Carlo TE, Bonini Filho MA, Chin AT, et al. Spectral-domain optical coherence tomography angiography of choroidal neovascularization. Ophthalmology. 2015;122(6):1228–38. https://doi.org/10.1016/j.ophtha.2015.01.029.

    Article  PubMed  Google Scholar 

  10. Kuehlewein L, Bansal M, Lenis TL, et al. Optical coherence tomography angiography of type 1 neovascularization in age-related macular degeneration. Am J Ophthalmol. 2015;160(4):739–748e.2. https://doi.org/10.1016/j.ajo.2015.06.030.

    Article  PubMed  Google Scholar 

  11. El Ameen A, Cohen SY, Semoun O, et al. Type 2 neovascularization secondary to age-related macular degeneration imaged by optical coherence tomography angiography. Retina. 2015;35(11):2212–8. https://doi.org/10.1097/IAE.0000000000000773.

    Article  PubMed  Google Scholar 

  12. Tanaka K, Mori R, Kawamura A, et al. Comparison of OCT angiography and indocyanine green angiographic findings with subtypes of polypoidal choroidal vasculopathy. Br J Ophthalmol. 2017;101(1):51–5. https://doi.org/10.1136/bjophthalmol-2016-309264.

    Article  PubMed  Google Scholar 

  13. Balaratnasingam C, Yannuzzi LA, Spaide RF. Possible choroidal neovascularization in macular telangiectasia type 2. Retina. 2015;35(11):2317–22. https://doi.org/10.1097/IAE.0000000000000887.

    Article  PubMed  Google Scholar 

  14. Gaudric A, Krivosic V, Tadayoni R. Outer retina capillary invasion and ellipsoid zone loss in macular telangiectasia type 2 imaged by optical coherence tomography angiography. Retina. 2015;35(11):2300–6. https://doi.org/10.1097/IAE.0000000000000799.

    Article  PubMed  Google Scholar 

  15. Baba T, Kakisu M, Nizawa T, et al. Superficial foveal avascular zone determined by optical coherence tomography angiography before and after macular hole surgery. Retina. 2017;37(3):444–50. https://doi.org/10.1097/IAE.0000000000001205.

    Article  PubMed  Google Scholar 

  16. Carpineto P, Mastropasqua R, Marchini G, et al. Reproducibility and repeatability of foveal avascular zone measurements in healthy subjects by optical coherence tomography angiography. Br J Ophthalmol. 2016;100(5):671–6. https://doi.org/10.1136/bjophthalmol-2015-307330.

    Article  PubMed  Google Scholar 

  17. Shahlaee A, Pefkianaki M, Hsu J, Ho AC. Measurement of foveal avascular zone dimensions and its reliability in healthy eyes using optical coherence tomography angiography. Am J Ophthalmol. 2016;161:50–55e.1. https://doi.org/10.1016/j.ajo.2015.09.026.

    Article  PubMed  Google Scholar 

  18. Cho KH, Park SJ, Cho JH, et al. Inner-retinal irregularity index predicts postoperative visual prognosis in idiopathic epiretinal membrane. Am J Ophthalmol. 2016;168:139–49. https://doi.org/10.1016/j.ajo.2016.05.011.

    Article  PubMed  Google Scholar 

  19. Samara WA, Say EA, Khoo CT, et al. Correlation of foveal avascular zone size with foveal morphology in normal eyes using optical coherence tomography angiography. Retina. 2015;35(11):2188–95. https://doi.org/10.1097/IAE.0000000000000847.

    Article  PubMed  Google Scholar 

  20. Ripandelli G, Scarinci F, Piaggi P, et al. Macular pucker: to peel or not to peel the internal limiting membrane? A microperimetric response. Retina. 2015;35(3):498–507. https://doi.org/10.1097/IAE.0000000000000330.

    Article  PubMed  Google Scholar 

  21. Park SW, Byon IS, Lee JE, Oum BS. Analysis of the ganglion cell layer and photoreceptor layer using optical coherence tomography after idiopathic epiretinal membrane surgery. Graefes Arch Clin Exp Ophthalmol. 2015;253(10):1829–30. https://doi.org/10.1007/s00417-015-3002-6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Baba MD.

Ethics declarations

Conflict of interest

T. Baba, M. Kakisu, T. Nizawa, T. Oshitari, and S. Yamamoto declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baba, T., Kakisu, M., Nizawa, T. et al. Study of foveal avascular zone by OCTA before and after idiopathic epiretinal membrane removal. Spektrum Augenheilkd. 32, 31–38 (2018). https://doi.org/10.1007/s00717-017-0375-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00717-017-0375-4

Keywords

Schlüsselwörter

Navigation