Skip to main content
Log in

Foreign competition and optimal privatization with excess burden of taxation

  • Published:
Journal of Economics Aims and scope Submit manuscript

Abstract

We examine in a mixed oligopoly setting how foreign competition and the excess burden of taxation will affect privatization policy in the presence of strategic tax/subsidy policies. We show that in the presence of excess burden of taxation with foreign competitors, output subsidy coupled with import tariff and partial privatization is adopted to improve the social welfare. However, if the excess burden of taxation is relatively large, the government may switch to use production tax coupled with tariff policy and partial privatization to improve the social welfare.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Bhagwati and Srinivasan (1969) argued that theorists consider seriously the question of devising the optimal economic policy when social utility cannot take the maximum value that is attainable within the framework of technological, resource and trading opportunities, owing to constraints provided by “non-economic” objectives.

  2. See Chao et al. (2017) who examined the effect of a merger of state-owned firms on wage gap, employment and social welfare in a general equilibrium setting.

  3. Wang and Chen (2010) casted doubt on the robust result in Matsumura and Kanda (2005) who argued that in the long run, welfare-maximizing behavior by the public firm is always optimal in mixed markets. Wang and Chen (2010) showed that the optimal policy for a state-owned firm is partial privatization in the presence of a cost-efficiency gap and further determined that long-run degree of privatization is larger than the short-run one.

  4. Ballard et al. (1985) and Snower and Warren (1996) reported that the shadow cost of public funds is generally assessed to be around 0.3 in industrial countries. However, Capuano and De Feo (2010) assume that it has some higher-bound restriction. In Jacobs (2016), allowing for re-distributional concerns, the marginal excess burden of distortionary taxes is shown to be equal to the marginal distributional gain at the optimal tax system.

  5. See Matsumura and Kanda (2005), Wang et al. (2009) and Wang and Chen (2010) for using the specification of increasing marginal costs (decreasing returns to scale technology) in mixed oligopolies. In the current paper, we use a homogeneous demand function with decreasing returns to scale technology, which is not a general specification of the demand and the cost side of the model. Once the two assumptions are relaxed, our results may qualitatively differ. We thank both reviewers for pointing out that our results are sensitive to the demand and cost specifications.

  6. The similar specification can be found in Capuano and De Feo (2010), Wang and Chen (2011) and Matsumura and Tomaru (2013, 2015).

  7. Public firms may have other different targets, such as maximizing the profit, income, employee’s income or management of license, etc. See De Fraja and Delbono (1989) and Pal and White (1998) on the modeling of a public firm as a social welfare maximizer.

  8. Lee and Hwang (2003) elaborated on the framework of Matsumura (1998) by allowing for managerial inefficiency, and showed that under moderate conditions, partial ownership is a reasonable choice of government in a monopoly market as well as in a mixed duopoly market, where a public firm competes with a profit-maximizing private firm.

  9. We thank two anonymous referees for pointing out this concern.

  10. Please see “Appendix II”.

  11. This result parallels the analysis of Pal and White (1998), who found that the subsidy is a better choice for the government when the cost parameter is not so large.

References

  • Ballard C, Shoven JB, Whalley J (1985) General equilibrium computations of the marginal welfare costs of taxation in the United States. Am Econ Rev 75:128–138

    Google Scholar 

  • Bárcena-Ruiz JC, Garzón MB (2017) Privatization of state holding corporations. J Econ 120:171–188

    Article  Google Scholar 

  • Bhagwati JN, Srinivasan T (1969) Optimal intervention to achieve non-economic objectives. Rev Econ Stud 36:27–38

    Article  Google Scholar 

  • Capuano C, De Feo G (2010) Privatization in oligopoly: the impact of the shadow cost of public funds. Rivista Italiana Degli Economisti 15:175–208

    Google Scholar 

  • Chang WW (2007) Optimal trade, industrial, and privatization policies in a mixed duopoly with strategic managerial incentives. J Int Trade Econ Dev 16:31–51

    Article  Google Scholar 

  • Chao CC, Ee MS, Wang LFS (2017) Public firm’s merger, employment and welfare in developing countries: a general equilibrium analysis. Rev Dev Econ. https://doi.org/10.1111/rode.12364

  • Chen T-L (2017) Privatization and efficiency: a mixed oligopoly approach. J Econ 120:251–268

    Article  Google Scholar 

  • De Fraja G, Delbono F (1989) Alternative strategies of a public enterprise in oligopoly. Oxf Econ Pap 41:302–311

    Article  Google Scholar 

  • Dijkstra BR, Mathew AZ, Mukherjee A (2015) Privatization in the presence of foreign competition and strategic policies. J Econ 114:271–290

    Article  Google Scholar 

  • Fjell K, Pal D (1996) A mixed oligopoly in the presence of foreign private firms. Can J Econ 29:737–743

    Article  Google Scholar 

  • Han L (2012) Strategic privatization and trade policies in an international mixed oligopoly. Manch Sch 80:580–602

    Article  Google Scholar 

  • Jacobs B (2016) The marginal cost of public funds is one at the optimal tax system. Working Paper Series, Center for Fiscal Studies, Department of Economics, Uppsala University

  • Lee SH, Hwang HS (2003) Partial ownership for the public firm and competition. Jpn Econ Rev 54:324–335

    Article  Google Scholar 

  • Lee SH, Xu LL, Chen Z (2013) Competitive privatization and tariff policies in an international mixed duopoly. Manch Sch 81:763–779

    Article  Google Scholar 

  • Lin JY, Li Z (2008) Policy burden, privatization and soft budget constraint. J Comp Econ 36:90–102

    Article  Google Scholar 

  • Matsumura T (1998) Partial privatization in a mixed duopoly. J Public Econ 70:473–483

    Article  Google Scholar 

  • Matsumura T (2003) Stackelberg mixed duopoly with a foreign competitor. Bull Econ Res 55:275–287

    Article  Google Scholar 

  • Matsumura T, Kanda O (2005) Mixed oligopoly at free entry markets. J Econ 84:27–48

    Article  Google Scholar 

  • Matsumura T, Tomaru Y (2013) Mixed duopoly, privatization, and subsidization with excess burden of taxation. Can J Econ 46:526–554

    Article  Google Scholar 

  • Matsumura T, Tomaru Y (2015) Mixed duopoly, location choice, and shadow cost of public funds. South Econ J 82:416–429

    Google Scholar 

  • Pal D, White MD (1998) Mixed oligopoly, privatization, and strategic trade policy. South Econ J 65:264–281

    Article  Google Scholar 

  • Pigou AC (1947) Economic progress in a stable environment. Economica 14:180–188

    Article  Google Scholar 

  • Snower A, Warren R (1996) The marginal welfare cost of public funds: theory and estimates. J Public Econ 61:289–305

    Article  Google Scholar 

  • Wang LFS, Chen T-L (2010) Do cost efficiency gap and foreign competitors matter concerning optimal privatization policy at the free entry market? J Econ 100:33–49

    Article  Google Scholar 

  • Wang LFS, Chen T-L (2011) Privatization, efficiency gap, and subsidization with excess taxation burden. Hitotsubashi J Econ 52:55–68

    Google Scholar 

  • Wang LFS, Wang YC, Zhao L (2009) Privatization and efficiency gain in an international mixed oligopoly with asymmetric costs. Jpn Econ Rev 60:539–559

    Article  Google Scholar 

  • Xu L, Sang-Ho Lee, Wang LFS (2016) Free trade agreements and privatization policy with an excess burden of taxation. Jpn World Econ 37–38:55–64

    Article  Google Scholar 

  • Yu R, Lee SH (2011) Optimal trade and privatization policies in an international mixed market. Seoul J Econ 24:51–71

    Google Scholar 

Download references

Acknowledgements

We would like to thank the Editor and two anonymous referees for the constructive suggestions received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard F. S. Wang.

Appendices

Appendix I

(i)

$$\begin{aligned} \frac{{\partial q}_{di}^{*}}{\partial t}= & {} \frac{m(n+(2+n)\theta )+2m(1+n)(1-\theta )\lambda }{2(4+2m+n+(2+n)\theta )+4(3+m+n)(1-\theta )\lambda }>0 \\ \frac{\partial q_{0}^{*}}{\partial t}= & {} \frac{-m(n(1-\theta )+2\theta \lambda -2(\theta +\lambda ))}{2(4+2m+n+(2+n)\theta )+4(3+m+n)(1-\theta )\lambda }>0, \\ \textit{if}\, \theta> & {} \frac{n-2\lambda }{2+n-2\lambda }. \\ \frac{\partial {(q}_{0}^{*}+nq_{di}^{*})}{\partial t}= & {} \frac{m(1+(1-\theta )\lambda )}{4+2m+n+2\theta +n\theta +2(3+m+n)(1-\theta )\lambda }>0 \\ \frac{\partial q_{fj}^{*}}{\partial t}= & {} -\frac{4+n+\left( 2+n \right) \theta +2(3+n)(1-\theta )\lambda }{2(4+2m+n+(2+n)\theta )+4(3+m+n)(1-\theta )\lambda }<0 \\ \frac{\partial Q^{*}}{\partial t}= & {} -\frac{2m(1+\lambda -\theta \lambda )}{4+2m+n+2\theta +n\theta +2(3+m+n)(1-\theta )\lambda }<0. \\ \frac{{\partial q}_{di}^{*}}{\partial s}= & {} \frac{(2+m)(2\theta +n(1+\theta )+2n(1-\theta )\lambda )}{2(4+2m+n+(2+n)\theta )+4(3+m+n)(1-\theta )\lambda }>0 \\ \frac{\partial q_{0}^{*}}{\partial s}= & {} \frac{2\left( 2+m \right) \theta -n(1-\theta )(2+m+2\lambda )}{2(4+2m+n+(2+n)\theta )+4(3+m+n)(1-\theta )\lambda }>0, \\ \textit{if} \,\theta> & {} \frac{n(2+m+2\lambda )}{(2+m)(2+n)+2n\lambda }. \\ \frac{\partial {(q}_{0}^{*}+nq_{di}^{*})}{\partial s}= & {} \frac{2+m+(3+m)(1-\theta )\lambda }{4+2m+n+2\theta +n\theta +2(3+m+n)(1-\theta )\lambda }>0 \\ \frac{\partial q_{fj}^{*}}{\partial s}= & {} -\frac{n+\left( 2+n \right) \theta +2n(1-\theta )\lambda }{2(4+2m+n+(2+n)\theta )+4(3+m+n)(1-\theta )\lambda }<0 \\ \frac{\partial Q^{*}}{\partial s}= & {} \frac{2\theta +n(1+\theta )+2n(1-\theta )\lambda }{4+2m+n+2\theta +n\theta +2(3+m+n)(1-\theta )\lambda }>0 \end{aligned}$$

(ii)

$$\begin{aligned}&\frac{{\partial q}_{di}^{*}}{\partial \theta }=\frac{2a(1+m)-(2+n)((2+m)s+mt)-2(3+m+n)s\lambda }{{(4+2m+n+2\theta +n\theta +2(3+m+n)(1-\theta )\lambda )}^{2}}>0, \textit{if}\, \,{\lambda<\lambda }^{*}.\\&\frac{\partial q_{0}^{*}}{\partial \theta }=\frac{-(2+m+n)(2a(1+m)-(2+n)((2+m)s+mt)-2(3+m+n)s\lambda )}{{(4+2m+n+2\theta +n\theta +2(3+m+n)(1-\theta )\lambda )}^{2}}<0,\\&\quad \textit{if}\, \,{\lambda<\lambda }^{*}. \\&\frac{\partial {(q}_{0}^{*}+nq_{fi}^{*})}{\partial \theta }=\frac{-(2+m)(2a(1+m)-(2+n)((2+m)s+mt)-2(3+m+n)s\lambda )}{{(4+2m+n+2\theta +n\theta +2(3+m+n)(1-\theta )\lambda )}^{2}}<0, \\&\quad \textit{if}\,\, {\lambda<\lambda }^{*}. \\&\frac{\partial q_{fj}^{*}}{\partial \theta }=\frac{2a(1+m)-(2+n)((2+m)s+mt)-2(3+m+n)s\lambda }{{(4+2m+n+2\theta +n\theta +2(3+m+n)(1-\theta )\lambda )}^{2}}>0, \textit{if}\, \,{\lambda<\lambda }^{*}.\\&\frac{\partial Q^{*}}{\partial \theta }=\frac{-2(2a(1+m)-(2+n)((2+m)s+mt)-2(3+m+n)s\lambda )}{{(4+2m+n+2\theta +n\theta +2(3+m+n)(1-\theta )\lambda )}^{2}}<0, \textit{if }\,\,{\lambda <\lambda }^{*},\\ \end{aligned}$$

where \(\lambda ^{*}\equiv \frac{2a+2am-4s-2ms-2ns-mns-2mt-mnt}{2(3+m+n)s}\). When a is sufficiently large, this condition is no longer needed.

Appendix II: The second-order conditions for optimal policies

We check the second-order conditions for the welfare maximization on (\(s,t,\theta )\) at the neighborhood of the equilibrium (\(s^{*} t^{*} \theta ^{*})\).

$$\begin{aligned} \frac{\partial ^{2}W}{\partial \theta ^{2}}= & {} -\frac{a^{2}\left( 1+\lambda \right) ^{2}\left( 8+8m+m^{2}+5n+2mn+n^{2}+\left( 2+m+n \right) \left( 6+m+n \right) \lambda \right) \left( 24\lambda +\left( 1+\lambda \right) \left( m+4\left( m+n \right) \lambda \right) \right) ^{4}}{{\begin{array}{l} 4\left( 8+m+4n+2\left( 22+3m+6n \right) \lambda +8\left( 6+m+n \right) \lambda ^{2} \right) ^{2} \\ {\times \left( m\left( 3+m+n \right) +\left( 5m^{2}+m\left( 39+9n \right) +4\left( 12+n\left( 6+n \right) \right) \right) \lambda +4\left( 3+m+n \right) \left( 6+m+n \right) \lambda ^{2} \right) }^{2} \\ \end{array}}}<0\\ \frac{\partial ^{2}W}{\partial t^{2}}= & {} \frac{{\begin{array}{l} -\{m(1+\lambda )(m^{3}(1+\lambda )\left( 1+4\lambda \right) ^{2}(5+n+9\lambda +4n\lambda )+64\lambda ^{2}\left( 12+6n+n^{2}+\left( 3+n \right) \left( 6+n \right) \lambda \right) ^{2} \\ +4m^{2}\left( 1+\lambda \right) \left( 1+4\lambda \right) \left( \left( 3+n \right) ^{2}+\left( 93+n\left( 46+7n \right) \right) \lambda +6\left( 24+n\left( 15+2n \right) \right) \lambda ^{2} \right) \\ +16m\lambda (n^{3}(1+\lambda )(2+3\lambda )(1+4\lambda )+36(2+3\lambda )(1+7\lambda (1+\lambda )) \\ +6n(10+\lambda (79+3\lambda (55+34\lambda )))+n^{2}(18+\lambda (134+\lambda (260+153\lambda )))))\} \\ \end{array}}}{(4{(48\lambda +m^{2}(1+\lambda )(1+4\lambda )+m(1+\lambda )(3+n+36\lambda +8n\lambda )+4(6+n)\lambda (n+(3+n)\lambda ))}^{2})}<0 \\ \frac{\partial ^{2}W}{\partial s^{2}}= & {} \frac{{\begin{array}{l} -4(8m^{2}+8m^{3}+m^{4}+12m^{2}n+12m^{3}n+m^{4}n+4m^{2}n^{2}+4m^{3}n^{2}+92m^{2}\lambda +88m^{3}\lambda \\ +11m^{4}\lambda +256mn\lambda +408m^{2}n\lambda +176m^{3}n\lambda +14m^{4}n\lambda +192mn^{2}\lambda +240m^{2}n^{2}\lambda \\ +52m^{3}n^{2}\lambda +32mn^{3}\lambda +32m^{2}n^{3}\lambda +384m^{2}\lambda ^{2}+344m^{3}\lambda ^{2}+43m^{4}\lambda ^{2} \\ +2304n\lambda ^{2}+4992mn\lambda ^{2}+3852m^{2}n\lambda ^{2}+1028m^{3}n\lambda ^{2}+73m^{4}n\lambda ^{2}+2048n^{2}\lambda ^{2} \\ +3744mn^{2}\lambda ^{2}+2004m^{2}n^{2}\lambda ^{2}+252m^{3}n^{2}\lambda ^{2}+576n^{3}\lambda ^{2}+832mn^{3}\lambda ^{2} \\ +240m^{2}n^{3}\lambda ^{2}+64n^{4}\lambda ^{2}+64mn^{4}\lambda ^{2}+716m^{2}\lambda ^{3}+584m^{3}\lambda ^{3}+73m^{4}\lambda ^{3} \\ +16128n\lambda ^{3}+24576mn\lambda ^{3}+13584m^{2}n\lambda ^{3}+2760m^{3}n\lambda ^{3}+172m^{4}n\lambda ^{3} \\ +11392n^{2}\lambda ^{3}+14880mn^{2}\lambda ^{3}+5608m^{2}n^{2}\lambda ^{3}+556m^{3}n^{2}\lambda ^{3}+2816n^{3}\lambda ^{3} \\ +2976mn^{3}\lambda ^{3}+576m^{2}n^{3}\lambda ^{3}+256n^{4}\lambda ^{3}+192mn^{4}\lambda ^{3}+608m^{2}\lambda ^{4} \\ +448m^{3}\lambda ^{4}+56m^{4}\lambda ^{4}+32832n\lambda ^{4}+39808mn\lambda ^{4}+17616m^{2}n\lambda ^{4}+3080m^{3}n\lambda ^{4} \\ +176m^{4}n\lambda ^{4}+19904n^{2}\lambda ^{4}+20736mn^{2}\lambda ^{4}+6288m^{2}n^{2}\lambda ^{4}+544m^{3}n^{2}\lambda ^{4} \\ +4288n^{3}\lambda ^{4}+3584mn^{3}\lambda ^{4}+560m^{2}n^{3}\lambda ^{4}+320n^{4}\lambda ^{4}+192mn^{4}\lambda ^{4}+192m^{2}\lambda ^{5} \\ +128m^{3}\lambda ^{5}+16m^{4}\lambda ^{5}+20736n\lambda ^{5}+19968mn\lambda ^{5}+7488m^{2}n\lambda ^{5} \\ +1184m^{3}n\lambda ^{5}+64m^{4}n\lambda ^{5}+11136n^{2}\lambda ^{5}+9408mn^{2}\lambda ^{5}+2448m^{2}n^{2}\lambda ^{5}+192m^{3}n^{2}\lambda ^{5} \\ +2048n^{3}\lambda ^{5}+1408mn^{3}\lambda ^{5}+192m^{2}n^{3}\lambda ^{5}+128n^{4}\lambda ^{5}+64mn^{4}\lambda ^{5}) \\ \end{array}}}{(16{(48\lambda +m^{2}(1+\lambda )(1+4\lambda )+m(1+\lambda )(3+n+36\lambda +8n\lambda )+4(6+n)\lambda (n+(3+n)\lambda ))}^{2})}<0 \\ \frac{\partial ^{2}W}{\partial \theta \partial t}= & {} \frac{\partial ^{2}W}{\partial t\partial \theta }= \frac{{\begin{array}{l} am\left( 1+\lambda \right) ^{2}[m\left( 10+m+4n \right) +\left( 6+m+n \right) \left( 5m+4\left( 4+n \right) \right) \lambda \\ +4\left( 6+m+n \right) ^{2}\lambda ^{2}{(24\lambda +(1+\lambda )(m+4(m+n)\lambda ))}^{2}] \\ \end{array}}}{{\begin{array}{l} 4\left( 8+m+4n+2\left( 22+3m+6n \right) \lambda +8\left( 6+m+n \right) \lambda ^{2} \right) \\ \times {(m(3+m+n)+(5m^{2}+m(39+9n)+4(12+n(6+n)))\lambda +4(3+m+n)(6+m+n)\lambda ^{2})}^{2} \\ \end{array}}} \\ \frac{\partial ^{2}W}{\partial \theta \partial s}= & {} \frac{\partial ^{2}W}{\partial s\partial \theta }=\frac{{\begin{array}{l} (a(1+\lambda )\left( 24\lambda +\left( 1+\lambda \right) \left( m+4\left( m+n \right) \lambda \right) \right) ^{2} \\ {(m}^{3}\left( 1{+}\lambda \right) ^{2}\left( 1{+}4\lambda \right) {+}m^{2}\left( 1+\lambda \right) \left( 8+4n+40\lambda +9n\lambda +8\left( 4+n \right) \lambda ^{2} \right) -8n\lambda \left( 2+n+\left( 11+3n \right) \lambda +2\left( 6+n \right) \lambda ^{2} \right) \\ +2m(1+\lambda )(4+2n+22\lambda +n(13+2n)\lambda +2(12+n(4+n))\lambda ^{2}))) \\ \end{array}}}{{\begin{array}{l} (4(8+m+4n+2(22+3m+6n)\lambda +8(6+m+n)\lambda ^{2}) \\ {(m(3+m+n)+(5m^{2}+m(39+9n)+4(12+n(6+n)))\lambda +4(3+m+n)(6+m+n)\lambda ^{2})}^{2}) \\ \end{array}}} \\ \frac{\partial ^{2}W}{\partial t\partial s}= & {} \frac{\partial ^{2}W}{\partial s\partial t}= \frac{{\begin{array}{l} (m(1+\lambda )(-m^{2}(1+n)(10+m+4n)-m(m^{2}(10+13n)+16(3+n)(2+n(7+2n))+6m(16+n(29+8n)))\lambda \\ -(m^{3}(33+60n)+16m(3+n)(13+n(62+13n))+6m^{2}(53+2n(70+17n))+32n(84+n(68+n(19+2n))))\lambda ^{2} \\ -8\left( 6+m+n \right) \left( m^{2}\left( 5+14n \right) +4n\left( 53+n\left( 27+4n \right) \right) +m\left( 23+2n\left( 64+15n \right) \right) \right) \lambda ^{3} \\ -16{(6+m+n)}^{2}(m+4mn+4n(4+n))\lambda ^{4})) \\ \end{array}}}{(4{(m(3+m+n)+(5m^{2}+m(39+9n)+4(12+n(6+n)))\lambda +4(3+m+n)(6+m+n)\lambda ^{2})}^{2})} \end{aligned}$$

We have

$$\begin{aligned}&\left| {\begin{array}{*{20}c} \frac{\partial ^{2}W}{\partial \theta ^{2}} &{} \frac{\partial ^{2}W}{\partial \theta \partial t} &{} \frac{\partial ^{2}W}{\partial \theta \partial s}\\ \frac{\partial ^{2}W}{\partial t\partial \theta } &{} \frac{\partial ^{2}W}{\partial t^{2}} &{} \frac{\partial ^{2}W}{\partial t\partial s}\\ \frac{\partial ^{2}W}{\partial s\partial \theta } &{} \frac{\partial ^{2}W}{\partial s\partial t} &{} \frac{\partial ^{2}W}{\partial s^{2}}\\ \end{array} } \right| \\&\quad =-\frac{a^{2}mn\left( 1+\lambda \right) ^{3}\left( 24\lambda +\left( 1+\lambda \right) \left( m+4\left( m+n \right) \lambda \right) \right) ^{4}}{{\begin{array}{l} 16\left( 8+m+4n+2\left( 22+3m+6n \right) \lambda +8\left( 6+m+n \right) \lambda ^{2} \right) \\ {\times \left( m\left( 3+m+n \right) +\left( 5m^{2}+m\left( 39+9n \right) +4\left( 12+n\left( 6+n \right) \right) \right) \lambda +4\left( 3+m+n \right) \left( 6+m+n \right) \lambda ^{2} \right) }^{2} \\ \end{array}}}<0 \end{aligned}$$

The second-order conditions for the optimal degree of privatization, output subsidy and import tariff hold.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, JY., Wang, L.F.S. Foreign competition and optimal privatization with excess burden of taxation. J Econ 125, 189–204 (2018). https://doi.org/10.1007/s00712-017-0592-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00712-017-0592-y

Keywords

JEL Classification

Navigation