Skip to main content
Log in

Endogenous sector-biased technical change and perpetual and transient structural change

  • Published:
Journal of Economics Aims and scope Submit manuscript

Abstract

This paper provides a new definition of structural change and then categorizes such changes into two types. Transient structural change is related to the short-term adjustment of sectoral labor employment, while perpetual structural change concerns the long-run trends of labor reallocation among sectors. If we focus on supply-side reasons, we find that the one and only fundamental driving force of perpetual structural change is sector-biased technical change. We also investigate the structural parameters of the model that determine the direction of sector-biased technical change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For reference, see Matsuyama (2008) and Herrendorf et al. (2014).

  2. These two cases roughly correspond to what Herrendorf et al. (2013) call the “changes in aggregate income” and “changes in relative sectoral prices” explanations.

  3. There are no transitional dynamics in Boppart (2014), Boppart and Weiss (2013), or Herrendorf and Valentinyi (2016).

  4. Much of the literature focuses on a single mechanism behind structural change, and only a few studies (e.g., Bonatti and Felice 2008; Boppart 2014; Buera and Kaboski 2012a) accommodate demand and supply drivers of structural change.

  5. In the Cobb-Douglas production function, the purely labor-augmenting technical change rate in one sector is equivalent to the Hicks-neutral technical change rate divided by the labor intensity of production (the output elasticity of labor) in the same sector.

  6. Considering that the degree of technology spillover effects within the agriculture sector is larger than that within the industrial sector (Griliches 1992) and the elasticity of substitution between agricultural and non-agricultural goods is less than unity, our model predicts that technical change will be biased toward the agricultural sector, which enjoys faster growth in real output than the non-agricultural sector, although more R&D resources and more factors will be allocated to the non-agricultural sector.

  7. According to Proposition 4 in this paper, there is a threshold value of the elasticity of substitution between the goods in the two sectors for the reverse to occur.

  8. Herrendorf et al. (2014, pp. 878) think that the definition of BGP is excessively strict for models with structural transformation because the very nature of structural transformation is that the sectoral composition changes.

  9. Please refer to Eq. (6) for the reason why structural change cannot be defined in terms of the employment share of the labor-inflowing sector.

  10. When the limit cycles are eliminated in the multi-sector growth model, it is obvious that we must have \(\mathop {\lim }\limits _{t\rightarrow \infty }\dot{n}_{j}=0\) for all j, as the employment shares cannot be outside the closed interval [0, 1].

  11. If \(\dot{n}_i \) and \(n_i \) are infinitesimals of the same order in the long run, then their ratio has a finite negative limit, \(\mathop {\lim }\limits _{t\rightarrow \infty } {\dot{n}_i }/{n_i }<0\).

  12. The numerical estimates of the dynamic paths in the neoclassical growth model in Barro and Sala-i-Martin (2003, pp. 117) imply that almost all transitional dynamics occur in the first 200 years.

  13. Generally, when one attempts to explain sustained economic growth with transitional dynamics, there are extremely counterfactual implications (King and Rebelo 1993).

  14. England experienced a rapid decline in the agricultural share between the early seventeenth and the beginning of the eighteenth centuries (Wallis et al. 2016).

  15. In Acemoglu and Guerrieri (2006, pp. 40-41), endogenous growth does not restore balance between the two sectors as long as capital intensity differences between the two sectors remain.

  16. In Acemoglu and Guerrieri (2008), \({m_{i}}/{\alpha _{i}}\) is the purely labor-augmenting technical change rate in sector i.

  17. As in Ngai and Pissarides (2007), Hori et al. (2015, pp. 943) assume a logarithmic instantaneous utility function so that structural change is consistent with balanced growth in the aggregate economy.

  18. In addition to the spillover from the sectoral stock of private capital, Felice (2016) also assumes that the government purchases two publicly provided goods to enhance the productivity of the private sectors.

  19. The TFP growth rate is the same as the Hicks-neutral technical change rate.

  20. It is crucial for the structural transformation to occur from the goods to the service sector in Herrendorf and Valentinyi (2016, pp. 14) that the growth rates of TFP are not only endogenous but also are decreasing over time in either sector.

  21. We omit time arguments to simplify the notations whenever doing so does not cause confusion.

  22. In the productivity literature, \(\varphi _j \in (-\infty ,0)\) corresponds to the case referred to as “fishing out,” in which the rate of innovation decreases with the level of technology (Jones 1995). Therefore, the present model is a semi-endogenous growth model because a nonzero long-term growth rate of per capita consumption streams depends on a nonzero growth rate of the population, i.e., \(\nu >0\).

  23. The main conclusions of the present paper still apply in the competitive equilibrium and endogenous innovation setup in Zhang and Liu (2009). Unfortunately, the model in Zhang and Liu (2009) is much more complicated than the present model; consequently, we cannot successfully investigate the stability of the dynamic system in the competitive equilibrium and endogenous innovation setup.

  24. The variable \(N_i\) denotes the fraction of labor devoted to sector \(i=A,M,S\) in Kongsamut et al. (2001, pp. 874).

  25. In Acemoglu and Guerrieri (2008), \(\lambda \) is the employment share in the labor-intensive sector (labor-inflowing sector).

  26. Another way to think of labor-augmenting technical change is as a rescaling of the measure of the labor input: each worker after the technical change functions as if her efforts were magnified by a factor representing the size of the change (Foley and Michl 1999, pp. 60).

  27. Note that \(\alpha _{i} \ne \alpha _{-i}\) is the implicit assumption in the case of sector-unbiased technical change, as the aggregate production function in the final goods sector will take the standard Cobb-Douglas form if \(\alpha _i=\alpha _{-i} \) and \(\varphi _i=\varphi _{-i} \).

  28. Function \({X_{-i}}/{X_i}\) is increasing with time t.

  29. It is obvious that we have \(2-\varphi _i >1\) owing to \(\varphi _i <1\).

  30. The IPC was first introduced by Kennedy (1964); it is called the knowledge production function in Ngai and Samaniego (2011) and the innovation production function in Cai and Li (2014).

  31. The implicit assumption that one unit of final goods can be used to produce one unit of capital implies that the IPC in our paper does allow capital to be used in the production of knowledge. In Ngai and Samaniego (2011), parameter \(Z_i\) is an efficiency parameter for conducting research in industry i, total knowledge spillover \(\rho _i\) is the extent to which the production of new knowledge in sector i benefits from prior knowledge, parameter \(\psi _{i}\) indicates decreasing returns to research inputs, and parameter \(\eta _{i}\) captures the share of capital in R&D spending.

  32. Zhang and Liu (2009, pp. 9) assume that the cost to create a new type of intermediate good in sector j, which depends on the number of varieties previously invented in this sector, \(M_j\), is \(M_{j}^{\varphi _{j}}/{b_j}\) units of final goods Y, where \(b_j \) is a strictly positive constant measuring the technical difficulty of creating new blueprints in sector j. Thus, \(b_j\) in Zhang and Liu (2009) is the same as \(Z_j\) in Ngai and Samaniego (2011). In addition, Zhang and Liu (2009) show that the endogenous sectoral difference in purely labor-augmenting technical change rates does not depend on \(b_j\).

  33. \(\mathop {\lim }\limits _{t\rightarrow \infty } {\dot{Y}_i }/{Y_i }=\mathop {\lim }\limits _{t\rightarrow \infty } {\dot{K}}/K+\varepsilon /{(\varepsilon -1)}\mathop {\lim }\limits _{t\rightarrow \infty } {\dot{u}_i }/{u_i }\) implies that \(\mathop {\lim }\limits _{t\rightarrow \infty } {\dot{\Phi }_i }/{\Phi _i }=\mathop {\lim }\limits _{t\rightarrow \infty } {\dot{u}_i }/{u_i }\).

References

  • Acemoglu D (1998) Why do new technologies complement skills? Directed technical change and wage inequality. Q J Econ 113:1055–1089

    Article  Google Scholar 

  • Acemoglu D (2002) Directed technical change. Rev Econ Stud 69(4):781–809

    Article  Google Scholar 

  • Acemoglu D, Guerrieri V (2006) Capital deepening and non-balanced economic growth. NBER working paper no. W12475. http://www.nber.org/papers/w12475. Accessed 25 Sept 2016

  • Acemoglu D, Guerrieri V (2008) Capital deepening and non-balanced economic growth. J Polit Econ 116:467–498

    Article  Google Scholar 

  • Acemoglu D, Zilibotti F (2001) Productivity differences. Q J Econ 116:563–606

    Article  Google Scholar 

  • Arrow KJ (1962) The economic implications of learning by doing. Rev Econ Stud 29:155–173

    Article  Google Scholar 

  • Barro RJ, Sala-i-Martin X (2003) Economic growth, 2nd edn. MIT Press, Cambridge

    Google Scholar 

  • Baumol WJ (1967) Macroeconomics of unbalanced growth: the anatomy of urban crisis. Am Econ Rev 57:415–426

    Google Scholar 

  • Bonatti L, Felice G (2008) Endogenous growth and changing sectoral composition in advanced economies. Struct Change Econ Dyn 19:109–131

    Article  Google Scholar 

  • Bonatti L, Felice G (2010) Trade and growth in a two country model with home production and uneven technological spillovers. Manch Sch 78:484–509

    Article  Google Scholar 

  • Boppart T (2014) Structural change and the Kaldor facts in a growth model with relative price effects and non-Gorman preferences. Econometrica 82:2167–2196

    Article  Google Scholar 

  • Boppart T, Weiss FJ (2013) Non-homothetic preferences and industry directed technical change. SSRN. doi:10.2139/ssrn.2277547. Accessed 25 Sept 2016

  • Buera FJ, Kaboski JP (2012a) Scale and the origins of structural change. J Econ Theory 147:684–712

    Article  Google Scholar 

  • Buera FJ, Kaboski JP (2012b) The rise of the service economy. Am Econ Rev 102:2540–2569

    Article  Google Scholar 

  • Cai J, Li N (2014) Growth through intersectoral knowledge linkages. Nanliweb. http://www.nanliweb.com/research. Accessed 25 Sept 2016

  • Caselli F, Coleman WJ II (2001) The US structural transformation and regional convergence: a reinterpretation. J Polit Econ 109:584–616

    Article  Google Scholar 

  • Caselli F, Coleman WJ II (2006) The world technology frontier. Am Econ Rev 96:499–522

    Article  Google Scholar 

  • Comin DA, Lashkari D, Mestieri M (2015) Structural change with long-run income and price effects. NBER working paper no. 21595. http://www.nber.org/papers/w21595. Accessed 15 March 2017

  • Duarte M, Restuccia D (2010) The role of the structural transformation in aggregate productivity. Q J Econ 125:129–173

    Article  Google Scholar 

  • Felice G (2016) Size and composition of public investment, sectoral composition and growth. Eur J Polit Econ 44:136–158

    Article  Google Scholar 

  • Foellmi R, Zweimüller J (2008) Structural change, Engel’s consumption cycles and Kaldor’s facts of economic growth. J Monet Econ 55:1317–1328

    Article  Google Scholar 

  • Foley DK, Michl TR (1999) Growth and distribution. Harvard University Press, Cambridge

    Google Scholar 

  • Griliches Z (1992) The search for R&D spillovers. Scand J Econ 94:S29–S47

    Article  Google Scholar 

  • Grossman GM, Helpman E (1994) Endogenous innovation in the theory of growth. J Econ Perspect 8:23–44

    Article  Google Scholar 

  • Herrendorf B, Valentinyi Á (2016) Endogenous sector-biased technological change and industrial policy. https://economicdynamics.org/meetpapers/2016/paper_105.pdf. Accessed 15 March 2017

  • Herrendorf B, Rogerson R, Valentinyi Á (2013) Two perspectives on preferences and structural transformation. Am Econ Rev 103:2752–2789

    Article  Google Scholar 

  • Herrendorf B, Rogerson R, Valentinyi Á (2014) Growth and structural transformation. In: Aghion P, Durlauf SN (eds) Handbook of economic growth, vol 2B. Elsevier B.V., North Holland, pp 855–941

    Google Scholar 

  • Hicks J (1932) The theory of wages. Macmillan, London

    Google Scholar 

  • Hori T, Ikefuji M, Mino K (2015) Conformism and structural change. Int Econ Rev 56:939–961

    Article  Google Scholar 

  • Jones CI (1995) R&D-based models of economic growth. J Polit Econ 103:759–784

    Article  Google Scholar 

  • Jones CI, Scrimgeour D (2008) A new proof of Uzawa’s steady-state growth theorem. Rev Econ Stat 90:180–182

    Article  Google Scholar 

  • Kaldor N (1961) Capital accumulation and economic growth. In: Lutz F, Hague DC (eds) The theory of capital. MacMillan, New York, pp 177–222

    Chapter  Google Scholar 

  • Kamihigashi T (2001) Necessity of transversality conditions for infinite horizon problems. Econometrica 69:995–1012

    Article  Google Scholar 

  • Kennedy C (1964) Induced bias in innovation and the theory of distribution. Econ J 74:541–547

    Article  Google Scholar 

  • Kiley MT (1999) The supply of skilled labour and skill-biased technological progress. Econ J 109:708–724

    Article  Google Scholar 

  • King RG, Rebelo ST (1993) Transitional dynamics and economic growth in the neoclassical model. Am Econ Rev 83:908–931

    Google Scholar 

  • Kongsamut P, Rebelo S, Xie D (2001) Beyond balanced growth. Rev Econ Stud 68:869–882

    Article  Google Scholar 

  • Kuznets S (1957) Quantitative aspects of the economic growth of nations: II. Industrial distribution of national product and labor force. Econ Dev Cult Change 5:1–111

    Article  Google Scholar 

  • Kuznets S (1973) Modern economic growth: findings and reflections. Am Econ Rev 63:247–258

    Google Scholar 

  • Lin JY, Zhang P (2007) Development strategy, optimal industrial structure and economic growth in less developed countries. Harvard’s CID graduate student and postdoctoral fellow working paper no. 19. http://www.cid.harvard.edu/cidwp/grad/019.htm. Accessed 15 March 2017

  • Matsuyama K (2008) Structural change. In: Durlauf SN, Blume LE (eds) The new palgrave dictionary of economics, 2nd edn. Palgrave Macmillan, London

    Google Scholar 

  • Meckl J (2002) Structural change and generalized balanced growth. J Econ 77:241–266

    Article  Google Scholar 

  • Moro A (2015) Structural change, growth, and volatility. Am Econ J Macroecon 7:259–294

    Article  Google Scholar 

  • National Science Board (2012) Science and engineering indicators 2012. National Science Foundation, Arlington VA. http://www.nsf.gov/statistics/seind12/pdf/c04.pdf. Accessed 25 Sept 2016

  • Ngai LR, Pissarides CA (2007) Structural change in a multisector model of growth. Am Econ Rev 97:429–443

    Article  Google Scholar 

  • Ngai LR, Samaniego RM (2011) Accounting for research and productivity growth across industries. Rev Econ Dyn 14:475–495

    Article  Google Scholar 

  • Pardey PG, Alston JM, Chan-Kang C (2013) Public food and agricultural research in the United States: the rise and decline of public investments, and policies for renewal. AGree Commissioned Papers and Reports. http://www.foodandagpolicy.org/sites/default/files/AGree-Public%20Food%20and%20Ag%20Research%20in%20US-Apr%202013.pdf. Accessed 25 Sept 2016

  • Rebelo S (1991) Long-run policy analysis and long-run growth. J Polit Econ 99:500–521

    Article  Google Scholar 

  • Rivera-Batiz LA, Romer PM (1991) Economic integration and endogenous growth. Q J Econ 106:531–555

    Article  Google Scholar 

  • Romer PM (1990) Endogenous technological change. J Polit Econ 98:S71–S102

    Article  Google Scholar 

  • Shell K (1966) Toward a theory of inventive activity and capital accumulation. Am Econ Rev 56:62–68

    Google Scholar 

  • Thoenig M, Verdier T (2003) A theory of defensive skill-biased innovation and globalization. Am Econ Rev 93:709–728

    Article  Google Scholar 

  • Uzawa H (1961) Neutral inventions and the stability of growth equilibrium. Rev Econ Stud 28:117–124

    Article  Google Scholar 

  • Violante GL (2008) Skill-biased technical change. In: Durlauf SN, Blume LE (eds) The new palgrave dictionary of economics, 2nd edn. Palgrave Macmillan, London

    Google Scholar 

  • Wallis P, Colson J, Chilosi D (2016) Puncturing the Malthus delusion: structural change in the British economy before the industrial revolution, 1500–1800. LSE economic history working papers. http://eprints.lse.ac.uk/66816/1/WP240.pdf. Accessed 15 March 2017

  • Zhang P (2013) Capital augmenting technical change and time-varying labor share. SSRN. doi:10.2139/ssrn.2219561. Accessed 25 Sept 2016

  • Zhang P, Liu M (2009) Structural change in the two-sector model with endogenous technological progress. SSRN. doi:10.2139/ssrn.1523602. Accessed 25 Sept 2016

Download references

Acknowledgements

I thank the two anonymous referees for the very insightful comments and helpful suggestions. In addition, I also thank Daron Acemoglu, Yi Chen, Reto Föllmi, Berthold Herrendorf, Takashi Kamihigashi, David Lagakos, Justin Yifu Lin, Rachel L. Ngai, Danyang Xie, Bo Zhang, and Xiaodong Zhu as well as the seminar participants at the 2012 Econometric Society Australasian Meeting, 2012 Tsinghua Workshop in Macroeconomics, 2014 Asian Meeting of the Econometric Society, 2014 North America Winter Meeting of the Econometric Society, Conference on New Structural Economics, and Kobe University for their useful comments. Of course, the usual disclaimer applies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengfei Zhang.

Ethics declarations

Funding

National Natural Science Foundation of China (71273012), the Ministry of Education of the People’s Republic of China (12JZD036 and 14YJC790041), Beijing Planning Office of Philosophy and Social Science (12JGB021), China Scholarship Council ([2014]3012), and the Research Fund from School of Economics at Peking University.

Appendices

Appendix

In the appendix, we will analyze the ABGP and the transitional dynamics of the present model, in which the following lemma is useful.

Lemma A.1

When \(\mathop {\lim }\limits _{t\rightarrow \infty } n_{-i} >0\) and \(\mathop {\lim }\limits _{t\rightarrow \infty } u_{-i} >0\), the optimal trajectory of the present model can be described by an autonomous nonlinear dynamical system consisting of the dynamic trajectories of C, K, \(u_i \), and L in Eqs. (A.1), (A.2), and (A.3) as well as \(L(t)=\exp (\nu t)\).

$$\begin{aligned}&\frac{\dot{C}}{C}=-\frac{(\rho -\nu \sigma )}{\sigma }+\frac{\left( \alpha _i u_{-i} +\alpha _{-i} u_i\right) ^{\frac{1}{\varepsilon -1}}}{\sigma }\left\{ \gamma _i^{\frac{\varepsilon }{\varepsilon -1}} \alpha _i \alpha _{-i}^{\frac{1}{1-\varepsilon }} \left[ u_i^{\frac{1}{1-\varepsilon }} ({Y_i }/K)\right] \right. \nonumber \\&\quad \left. +\gamma _{-i}^{\frac{\varepsilon }{\varepsilon -1}} \alpha _{-i} \alpha _i^{\frac{1}{1-\varepsilon }} \left[ u_{-i}^{\frac{1}{1-\varepsilon }} ({Y_{-i} }/K)\right] \right\} \end{aligned}$$
(A.1)
$$\begin{aligned}&\frac{\dot{K}}{K}=\xi _i^{-1} \left[ {\frac{\varepsilon }{(\varepsilon -1)u_{-i} }-{\mathbb {F}}_i (u_i)} \right] \frac{\dot{u}_i }{u_i }-(\alpha _{-i} -\alpha _i)\xi _i^{-1} \nu \end{aligned}$$
(A.2)
$$\begin{aligned}&\frac{C}{K}+\left\{ {\mathbb {S}}(u_i )\xi _i^{-1} \left[ {\frac{\varepsilon }{(\varepsilon -1)u_{-i} }-{\mathbb {F}}_i (u_i )} \right] +\left[ \alpha _i (1-\varphi _i)\right] ^{-1}u_i\right. \nonumber \\&\quad \left. -\left[ \alpha _{-i} (1-\varphi _{-i} )\right] ^{-1}u_i \right\} \frac{\dot{u}_i}{u_i}\nonumber \\&\quad =\left[ {\gamma _i ({Y_i}/K)^{\frac{\varepsilon -1}{\varepsilon }}+\gamma _{-i} ({Y_{-i}}/K)^{\frac{\varepsilon -1}{\varepsilon }}} \right] ^{\frac{\varepsilon }{\varepsilon -1}}+{\mathbb {S}}(u_i )(\alpha _{-i}-\alpha _i)\xi _i^{-1} \nu \end{aligned}$$
(A.3)

where

$$\begin{aligned}&{Y_i}/K=A_i u_i \left( {\frac{(1-\alpha _i )\alpha _{-i} }{(1-\alpha _{-i} )\alpha _i +(\alpha _{-i} -\alpha _i )u_i }} \right) ^{1-\alpha _i }(L/K)^{1-\alpha _i }\\&\quad {\mathbb {F}}_i (u_i )\equiv \frac{1}{1-\varphi _i }+\alpha _i +\frac{(1-\alpha _i )(1-\alpha _{-i} )\alpha _i }{(1-\alpha _{-i} )\alpha _i +(\alpha _{-i} -\alpha _i )u_i } \\&\quad +\left[ {\frac{1}{1-\varphi _{-i} }+\alpha _{-i} +\frac{(1-\alpha _{-i} )(1-\alpha _i )\alpha _{-i} }{(1-\alpha _{-i} )\alpha _i +(\alpha _{-i} -\alpha _i )u_i }} \right] \frac{u_i }{u_{-i}} \\&\quad {\mathbb {S}}(u_i )\equiv 1+\frac{u_i }{\alpha _i (1-\varphi _i )}+\frac{u_{-i} }{\alpha _{-i} (1-\varphi _{-i} )} \end{aligned}$$

Proof of Lemma A.1

The derivative of the Hamiltonian with respect to total consumption, C, implies that

$$\begin{aligned} {\dot{C}}/C=-\sigma ^{-1}\left[ {\dot{\lambda }}/\lambda +(\rho -\nu \sigma )\right] \end{aligned}$$
(A.4)

Substituting \({\dot{\lambda }}/\lambda \) in Eq. (15) into (A.4) yields Eq. (A.1). Substituting \({\dot{n}_i}/{n_i}\) in Eq. (7) and the state of the art technology in Eq. (17) into (8), we can determine the growth rate of real output in the labor-outflowing sector i by

$$\begin{aligned} \frac{\dot{Y}_i }{Y_i }=\left[ {\frac{1}{1-\varphi _i }+\alpha _i } \right] \frac{\dot{K}}{K}+\left[ {\frac{1}{1-\varphi _i }+\alpha _i +\frac{(1-\alpha _i )(1-\alpha _{-i} )\alpha _i }{\alpha _i (1-\alpha _{-i})+(\alpha _{-i} -\alpha _i )u_i }} \right] \frac{\dot{u}_i }{u_i }+(1-\alpha _i )\nu \nonumber \\ \end{aligned}$$
(A.5)

Substituting \({\dot{Y}_i}/{Y_i}\) in Eq. (A.5) into (6) yields (A.2).

Finally, combining the R&D expenditures in Eq. (19) and the capital accumulation rate in Eq. (A.2) with the budget constraint \(Y=C+\dot{K}+X_i +X_{-i} \) gives Eq. (A.3).

Note that when sector \(-i\) instead of i is the labor-outflowing sector, \(\mathop {\lim }\limits _{t\rightarrow \infty } u_{-i} =0\), and \(u_{-i} \) cannot appear alone in the denominator in \({\mathbb {F}}_i (u_i )\) and Eq. (A.3) with the exception of \({\dot{u}_{-i} }/{u_{-i} }\). Thus, when \(\mathop {\lim }\limits _{t\rightarrow \infty } u_{-i} =0\), the optimal trajectory of the present model can be described by an autonomous nonlinear dynamical system consisting of the dynamic trajectories of C, K, \(u_{-i} \) instead of \(u_i \), and L, with i and \(-i\) being switched in Lemma A.1. \(\square \)

Proof of Proposition 3

When technical change is sector unbiased, Proposition 1 implies that the fractions of labor allocated in both sectors should lie on the unit interval, i.e., \(\mathop {\lim }\limits _{t\rightarrow \infty } n_i \in (0,1)\) and \(\mathop {\lim }\limits _{t\rightarrow \infty } n_{-i} \in (0,1)\). Substituting \(\mathop {\lim }\limits _{t\rightarrow \infty } {\dot{u}_i }/{u_i }=0\) and \(\mathop {\lim }\limits _{t\rightarrow \infty } {\dot{n}_i }/{n_i }=0\) into Eq. (A.2), we can yield the capital accumulation rate in the ABGP in the case of sector-unbiased technical change by \(\mathop {\lim }\limits _{t\rightarrow \infty } {\dot{K}}/K=(\alpha _i -\alpha _{-i} )\xi _i^{-1} \nu \). Sustainable economic growth in the case of sector-unbiased technical change requires \((\alpha _i -\alpha _{-i} )\xi _i^{-1} >1\).

Along the ABGP, \(\mathop {\lim }\limits _{t\rightarrow \infty } {\dot{K}}/K=\mathop {\lim }\limits _{t\rightarrow \infty } {\dot{Y}}/Y\) requires that

$$\begin{aligned} \mathop {\lim }\limits _{t\rightarrow \infty } {\dot{K}}/K=\mathop {\lim }\limits _{t\rightarrow \infty } {\dot{Y}}/Y=\mathop {\lim }\limits _{t\rightarrow \infty } {\dot{Y}_i }/{Y_i }=\mathop {\lim }\limits _{t\rightarrow \infty } {\dot{Y}_{-i} }/{Y_{-i} }=\mathop {\lim }\limits _{t\rightarrow \infty } {\dot{C}}/C=(\alpha _i -\alpha _{-i} )\xi _i^{-1} \nu \end{aligned}$$

Substituting \(\mathop {\lim }\limits _{t\rightarrow \infty } {\dot{K}}/K=(\alpha _i -\alpha _{-i} )\xi _i^{-1} \nu \), \(\mathop {\lim }\limits _{t\rightarrow \infty } {\dot{u}_i }/{u_i }=0\) and \(\mathop {\lim }\limits _{t\rightarrow \infty } {\dot{u}_{-i} }/{u_{-i} }=0\) into Eq. (17), we can determine the purely labor-augmenting technical change rate in the case of sector-unbiased technical change by

$$\begin{aligned}&(1-\alpha _i )^{-1}\mathop {\lim }\limits _{t\rightarrow \infty } {\dot{A}_i }/{A_i }=(1-\alpha _{-i} )^{-1}\mathop {\lim }\limits _{t\rightarrow \infty } {\dot{A}_{-i} }/{A_{-i} }\\&\quad =(1-\alpha _i )^{-1}(1-\varphi _i )^{-1}(\alpha _i -\alpha _{-i} )\xi _i^{-1} \nu \end{aligned}$$

Substituting \(\mathop {\lim }\limits _{t\rightarrow \infty } {\dot{C}}/C=(\alpha _i -\alpha _{-i} )\xi _i^{-1} \nu \) into Eq. (A.4), we can then express the growth rate for the co-state variable on physical capital in the long run in the case of sector-unbiased technical change as

$$\begin{aligned} \mathop {\lim }\limits _{t\rightarrow \infty } {\dot{\lambda }}/\lambda =-\sigma (\alpha _i -\alpha _{-i} )\xi _i^{-1} \nu -(\rho -\nu \sigma ) \end{aligned}$$

In addition, the growth rate for the co-state variable on the state of the art technology in sector j in the long run can be calculated from Eq. (14). It is easy to observe that the STVC in the case of sector-unbiased technical change can be satisfied provided that \((1-\sigma )(\alpha _i -\alpha _{-i} )\xi _i^{-1} \nu <(\rho -\nu \sigma )\). This process completes the proof of Proposition 3 in the main text.

Now, we will turn to the transitional dynamics of the present model in the case of sector-unbiased technical change. Sustainable economic growth implies that C, K, \(Y_i \) and \(Y_{-i} \) will grow without bound; thus, we need to transform these four variables into constants along the ABGP and then investigate the evolution of the transformed variables. The foregoing analysis implies that C / K, \(u_i^{\frac{1}{1-\varepsilon }} {Y_i}/K\), \(u_{-i}^{\frac{1}{1-\varepsilon }}{Y_{-i}}/K\), and \(u_i\) (\(u_{-i}\)) are all positive constants along the ABGP when technical change is sector unbiased.

Let us define \(\Theta \equiv C/K\), \(\Phi _i\equiv u_i^{\frac{1}{1-\varepsilon }}{Y_i}/K\), and \(\Phi _{-i}\equiv u_{-i}^{\frac{1}{1-\varepsilon }}{Y_{-i}}/K\). Regarding the transitional dynamics in the case of sector-unbiased technical change, we can apply Lemma A.1 to obtain the following proposition. \(\square \)

Proposition A.1

Suppose that the assumptions in Proposition 3 are satisfied, given \(L_0 =1\) and any initial conditions \(K(0)>0\); then, in the case of sector-unbiased technical change, the present economy can be described as either (a) a four-dimensional autonomous dynamical system consisting of the evolution of \(\Theta \) in Eq. (A.6), the evolution of \(\Phi _i \) in Eq. (A.7), the evolution of \(\Phi _{-i} \) in Eq. (A.8), and the evolution of \(u_i \) in Eq. (A.9) with \(u_{-i} \) being replaced by \(u_{-i} =1-u_i \); or (b) a four-dimensional autonomous dynamical system consisting of the evolution of \(\Theta \) in Eq. (A.6), the evolution of \(\Phi _i \) in Eq. (A.7), the evolution of \(\Phi _{-i} \) in Eq. (A.8), and the evolution of \(u_{-i} \) in Eq. (A.9) with \(u_i \) being replaced by \(u_i =1-u_{-i} \).

$$\begin{aligned}&\frac{\dot{\Theta }}{\Theta }=-\frac{(\rho -\nu \sigma )}{\sigma }+\left( {\alpha _i u_{-i} +\alpha _{-i} u_i } \right) ^{\frac{1}{\varepsilon -1}}\sigma ^{-1}\left[ \gamma _i^{\frac{\varepsilon }{\varepsilon -1}} \alpha _i \alpha _{-i}^{\frac{1}{1-\varepsilon }} \Phi _i +\gamma _{-i}^{\frac{\varepsilon }{\varepsilon -1}} \alpha _{-i} \alpha _i^{\frac{1}{1-\varepsilon }} \Phi _{-i} \right] -\frac{\dot{K}}{K} \nonumber \\\end{aligned}$$
(A.6)
$$\begin{aligned}&\frac{\dot{\Phi }_i }{\Phi _i }=\left[ {\frac{1}{1-\varphi _i }+\alpha _i -1} \right] \frac{\dot{K}}{K}+(1-\alpha _i )\nu \nonumber \\&\quad +\left[ {\frac{1}{1-\varepsilon }+\frac{1}{1-\varphi _i }+\alpha _i +\frac{(1-\alpha _i )(1-\alpha _{-i} )\alpha _i }{\alpha _i (1-\alpha _{-i} )+(\alpha _{-i} -\alpha _i )u_i }} \right] \frac{\dot{u}_i }{u_i} \end{aligned}$$
(A.7)
$$\begin{aligned}&\frac{\dot{\Phi }_{-i} }{\Phi _{-i} }=\left[ {\frac{1}{1-\varphi _{-i} }+\alpha _{-i} -1} \right] \frac{\dot{K}}{K}+(1-\alpha _{-i} )\nu \nonumber \\&\quad +\left[ {\frac{1}{1-\varepsilon }+\frac{1}{1-\varphi _{-i} }+\alpha _{-i} +\frac{(1-\alpha _{-i} )(1-\alpha _i )\alpha _{-i} }{\alpha _{-i} (1-\alpha _i )+(\alpha _i -\alpha _{-i} )u_{-i}}} \right] \frac{\dot{u}_{-i} }{u_{-i}} \end{aligned}$$
(A.8)
$$\begin{aligned}&\Theta +\left\{ {{\mathbb {S}}(u_i )\xi _i^{-1} \left[ {\frac{\varepsilon }{(\varepsilon -1)u_{-i} }-{\mathbb {F}}_i (u_i )} \right] +\left[ \alpha _i (1-\varphi _i )\right] ^{-1}u_i -\left[ \alpha _{-i} (1-\varphi _{-i} )\right] ^{-1}u_i } \right\} \frac{\dot{u}_i }{u_i } \nonumber \\&\quad =\left[ {\gamma _i ({Y_i }/K)^{\frac{\varepsilon -1}{\varepsilon }}+\gamma _{-i} ({Y_{-i} }/K)^{\frac{\varepsilon -1}{\varepsilon }}} \right] ^{\frac{\varepsilon }{\varepsilon -1}}+{\mathbb {S}}(u_i)(\alpha _{-i} -\alpha _i )\xi _i^{-1} \nu \end{aligned}$$
(A.9)

where \({\dot{K}}/K\) is given by Eq. (A.2).

Proof of Proposition 4

When technical change is sector biased, in which both factors will flow away from the labor-outflowing sector i to the labor-inflowing sector \(-i\) without cessation, sustainable economic growth in Eq. (20) requires \((1-\alpha _{-i} )(1-\varphi _{-i} )-1>0\). Substituting the R&D expenditures in Eq. (19) and the capital accumulation rate in Eq. (20) into the budget constraint \(Y=C+\dot{K}+X_i +X_{-i} \), we can obtain the aggregate consumption growth rate in the long run as

$$\begin{aligned} \mathop {\lim }\limits _{t\rightarrow \infty } {\dot{C}}/C=\left[ (1-\alpha _{-i} )(1-\varphi _{-i} )-1\right] ^{-1}(1-\alpha _{-i} )(1-\varphi _{-i} )\nu \end{aligned}$$
(A.10)

Equations (A.4) and (A.10) imply that the growth rate for the co-state variable on physical capital along the ABGP can be expressed as

$$\begin{aligned} \mathop {\lim }\limits _{t\rightarrow \infty } {\dot{\lambda }}/\lambda =-\sigma (1-\alpha _{-i} )(1-\varphi _{-i})\left[ (1-\alpha _{-i} )(1-\varphi _{-i} )-1\right] ^{-1}\nu -(\rho -\nu \sigma )\nonumber \\ \end{aligned}$$
(A.11)

In addition, the growth rate for the co-state variable on the state of the art technology in sector j along the ABGP can be calculated by substituting Eqs. (21), (22) and (A.11) into (14). It is easy to observe that the STVC in the case of sector-biased technical change, in which both factors will flow away from the labor-outflowing sector i to the labor-inflowing sector \(-i\) without cessation, can be satisfied provided that \((1-\sigma )(1-\alpha _{-i} )(1-\varphi _{-i} )[(1-\alpha _{-i} )(1-\varphi _{-i} )-1]^{-1}\nu <(\rho -\nu \sigma )\).

Finally, the arithmetic manipulation in Eq. (24) implies that (a) \((1-\alpha _i )^{-1}\mathop {\lim }\limits _{t\rightarrow \infty } {\dot{A}_i }/{A_i }>(1-\alpha _{-i} )^{-1}\mathop {\lim }\limits _{t\rightarrow \infty } {\dot{A}_{-i} }/{A_{-i} }\) if \(0<\varepsilon <1\) and \((1-\alpha _i )(1-\varphi _i )<(1-\alpha _{-i} )(1-\varphi _{-i} )\); (b) \((1-\alpha _i )^{-1}\mathop {\lim }\limits _{t\rightarrow \infty } {\dot{A}_i }/{A_i }<(1-\alpha _{-i} )^{-1}\mathop {\lim }\limits _{t\rightarrow \infty } {\dot{A}_{-i} }/{A_{-i} }\) if \(1<\varepsilon <2-\varphi _i \) and \((1-\alpha _{-i} )(1-\varphi _{-i} )<(1-\alpha _i )(1-\varphi _i )\); and (c) \((1-\alpha _i )^{-1}\mathop {\lim }\limits _{t\rightarrow \infty } {\dot{A}_i }/{A_i }<(1-\alpha _{-i} )^{-1}\mathop {\lim }\limits _{t\rightarrow \infty } {\dot{A}_{-i} }/{A_{-i} }\) if \(\varepsilon >2-\varphi _i \) and \((1-\alpha _i )(1-\varphi _i )<(1-\alpha _{-i} )(1-\varphi _{-i} )\). This completes the proof of Proposition 4 in the main text. \(\square \)

With regard to the transitional dynamics in the case of sector-biased technical change in which both factors will flow away from the labor-outflowing sector i to the labor-inflowing sector \(-i\) without cessation, we can apply Lemma A.1 to obtain the following proposition.

Proposition A.2

Suppose that the assumptions in Proposition 4 are satisfied, given \(L(0)=1\) and any initial conditions \(K(0)>0\); then, the present economy in the case of sector-biased technical change, in which both factors will flow away from the labor-outflowing sector i to the labor-inflowing sector \(-i\) without cessation, can be described as a four-dimensional autonomous dynamical system consisting of the evolution of \(\Theta \) in Eq. (A.12), the evolution of \(\Phi _{-i} \) in Eq. (A.13), the evolution of \(\Phi _i \) in Eq. (A.14), and the evolution of \(u_i \) in Eq. (A.15).

$$\begin{aligned}&\frac{\dot{\Theta }}{\Theta }=-\frac{(\rho -\nu \sigma )}{\sigma }+\left( \alpha _i u_{-i} +\alpha _{-i} u_i\right) ^{\frac{1}{\varepsilon -1}}\sigma ^{-1}\left[ \gamma _i^{\frac{\varepsilon }{\varepsilon -1}} \alpha _i \alpha _{-i}^{\frac{1}{1-\varepsilon }} \Phi _i +\gamma _{-i}^{\frac{\varepsilon }{\varepsilon -1}} \alpha _{-i} \alpha _i^{\frac{1}{1-\varepsilon }} \Phi _{-i}\right] -\frac{\dot{K}}{K} \nonumber \\\end{aligned}$$
(A.12)
$$\begin{aligned}&\frac{\dot{\Phi }_{-i} }{\Phi _{-i} }=\left[ {\frac{1}{1-\varphi _{-i} }+\alpha _{-i} -1} \right] \frac{\dot{K}}{K}+(1-\alpha _{-i} )\nu \nonumber \\&\quad - \frac{u_i }{u_{-i} }\left[ {\frac{1}{1-\varepsilon }+\frac{1}{1-\varphi _{-i} }+\alpha _{-i} +\frac{(1-\alpha _{-i} )(1-\alpha _i )\alpha _{-i} }{\alpha _{-i} (1-\alpha _i )+(\alpha _i -\alpha _{-i} )(1-u_i )}} \right] \frac{\dot{u}_i }{u_i } \end{aligned}$$
(A.13)
$$\begin{aligned}&\frac{\dot{\Phi }_i }{\Phi _i }=\left[ {\frac{1}{1-\varphi _i }+\alpha _i -1} \right] \frac{\dot{K}}{K}+(1-\alpha _i )\nu \nonumber \\&\quad + \left[ {\frac{1}{1-\varepsilon }+\frac{1}{1-\varphi _i }+\alpha _i +\frac{(1-\alpha _i )(1-\alpha _{-i} )\alpha _i }{\alpha _i (1-\alpha _{-i} )+(\alpha _{-i} -\alpha _i )u_i }} \right] \frac{\dot{u}_i }{u_i } \end{aligned}$$
(A.14)
$$\begin{aligned}&\Theta +\left\{ {{\mathbb {S}}(u_i )\xi _i^{-1} \left[ {\frac{\varepsilon }{(\varepsilon -1)u_{-i} }-{\mathbb {F}}_i (u_i )} \right] +\left[ \alpha _i (1-\varphi _i )\right] ^{-1}u_i -\left[ \alpha _{-i} (1-\varphi _{-i} )\right] ^{-1}u_i } \right\} \frac{\dot{u}_i }{u_i } \nonumber \\&\quad =\left[ {\gamma _i u_i^{\frac{1}{\varepsilon }} (\Phi _i )^{\frac{\varepsilon -1}{\varepsilon }}+\gamma _{-i} u_{-i}^{\frac{1}{\varepsilon }} (\Phi _{-i} )^{\frac{\varepsilon -1}{\varepsilon }}} \right] ^{\frac{\varepsilon }{\varepsilon -1}}+{\mathbb {S}}(u_i)(\alpha _{-i} -\alpha _i )\xi _i^{-1} \nu \end{aligned}$$
(A.15)

where \({\dot{K}}/K\) is given by Eq. (A.2).

The Jacobian of the dynamic system in the case of sector-biased technical change

When technical change is sector biased, in which both factors will flow away from the labor-outflowing sector i to the labor-inflowing sector \(-i\) without cessation, both \(\mathop {\lim }\limits _{t\rightarrow \infty } C/K\) and \(\mathop {\lim }\limits _{t\rightarrow \infty } u_{-i}^{\frac{1}{1-\varepsilon }} {Y_{-i} }/K\) are positive constants, and \(\mathop {\lim }\limits _{t\rightarrow \infty } u_i^{\frac{1}{1-\varepsilon }} {Y_i }/K=0\) according to \(\mathop {\lim }\limits _{t\rightarrow \infty } {\dot{Y}_i }/{Y_i }=\mathop {\lim }\limits _{t\rightarrow \infty } {\dot{K}}/K+\varepsilon /{(\varepsilon -1)}\mathop {\lim }\limits _{t\rightarrow \infty } {\dot{u}_i }/{u_i }\). Let us use \({*}\) as a superscript to indicate the constant value of a variable in the long run; we observe that \(\Theta ^{{*}}=\mathop {\lim }\limits _{t\rightarrow \infty } C/K>0\), \(\Phi _{-i}^{*} =\mathop {\lim }\limits _{t\rightarrow \infty } u_{-i}^{\frac{1}{1-\varepsilon }} {Y_{-i} }/K>0\), \(\Phi _i^{*} =\mathop {\lim }\limits _{t\rightarrow \infty } u_i^{\frac{1}{1-\varepsilon }} {Y_i }/K=0\), and \(u_i^{*} =0\). Substituting \(\mathop {\lim }\limits _{t\rightarrow \infty } {\dot{\Theta }}/\Theta =0\), \(u_i^{*} =0\), and \(\Phi _i^{*} =0\) into Eqs. (A.12) and (A.15), we can yield the steady-state value of \(\Theta ^{{*}}\) and \(\Phi _{-i}^{*} \) with the following linear system of equations with two variables.

$$\begin{aligned} 0= & {} -(\rho -\nu \sigma )\sigma ^{-1}-\mathop {\lim }\limits _{t\rightarrow \infty } {\dot{K}}/K+\sigma ^{-1}(\gamma _{-i} )^{\frac{\varepsilon }{\varepsilon -1}}\alpha _{-i} \Phi _{-i}^{*}\\&\Theta ^{{*}}+\mathop {\lim }\limits _{u_i \rightarrow 0} {\mathbb {S}}(u_i )\xi _i^{-1} \left[ {\frac{\varepsilon }{(\varepsilon -1)u_{-i} }-{\mathbb {F}}_i (u_i )} \right] \frac{\dot{u}_i }{u_i }=(\gamma _{-i} )^{\frac{\varepsilon }{\varepsilon -1}}\Phi _{-i}^{*}\\&+\mathop {\lim }\limits _{u_i \rightarrow 0} {\mathbb {S}}(u_i )(\alpha _{-i} -\alpha _i )\xi _i^{-1} \nu \end{aligned}$$

Substituting \(\mathop {\lim }\limits _{u_i \rightarrow 0} {\mathbb {F}}_i (u_i )=(1-\varphi _i )^{-1}+1\), \(\mathop {\lim }\limits _{u_i \rightarrow 0} {\mathbb {S}}(u_i )\equiv 1+[\alpha _{-i} (1-\varphi _{-i} )]^{-1}\), \(\mathop {\lim }\limits _{t\rightarrow \infty } {\dot{K}}/K\) in Eq. (20) and \(\xi _i =(1-\varphi _i )^{-1}-(1-\varphi _{-i} )^{-1}+\alpha _i -\alpha _{-i} \) and \(\mathop {\lim }\limits _{t\rightarrow \infty } {\dot{u}_i }/{u_i }=\mathop {\lim }\limits _{t\rightarrow \infty } {\dot{n}_i }/{n_i }\) in Eq. (23) into the above linear system of equations, we can obtain the explicit solutions of \(\Phi _{-i}^{*} \) and \(\Theta ^{{*}}\) as

$$\begin{aligned} \Phi _{-i}^{*}= & {} \left[ (\gamma _{-i} )^{\frac{\varepsilon }{\varepsilon -1}}\alpha _{-i}\right] ^{-1}\left\{ (\rho -\nu \sigma )+(1-\alpha _{-i} )(1-\varphi _{-i} )\sigma \right. \\&\left. \left[ (1-\alpha _{-i} )(1-\varphi _{-i})-1\right] ^{-1}\nu \right\} \\ \Theta ^{{*}}= & {} (\alpha _{-i} )^{-1}(1-\alpha _{-i} )\left\{ {(1-\varphi _{-i} )\sigma -\left[ {\alpha _{-i} (1-\varphi _{-i})+1} \right] } \right\} \\&\left[ (1-\alpha _{-i})(1-\varphi _{-i} )-1\right] ^{-1}\nu +(\rho -\nu \sigma ) \end{aligned}$$

The Jacobian of the dynamical system in the case of sector-biased technical change can be written as

$$\begin{aligned} \left[ {{\begin{array}{llll} {J_{11}^0}&{} {J_{12}^0}&{} {J_{13}^0}&{} {J_{14}^0} \\ {J_{21}^0}&{} {J_{22}^0}&{} {J_{23}^0}&{} {J_{24}^0} \\ {J_{31}^0}&{} {J_{32}^0}&{} {J_{33}^0}&{} {J_{34}^0} \\ {J_{41}^0}&{} {J_{42}^0}&{} {J_{43}^0}&{} {J_{44}^0} \\ \end{array}}}\right] =\mathop {\lim }\limits _{t\rightarrow \infty } \left[ {{\begin{array}{llll} {{\partial \dot{\Theta }}/{\partial \Theta }}&{}{{\partial \dot{\Theta }}/{\partial u_i}}&{} {{\partial \dot{\Theta }}/{\partial \Phi _{i}}}&{} {{\partial \dot{\Theta }}/{\partial \Phi _{-i}}}\\ {{\partial \dot{u}_i}/{\partial \Theta }}&{} {{\partial \dot{u}_i}/{\partial u_i }}&{} {{\partial \dot{u}_i }/{\partial \Phi _i }}&{} {{\partial \dot{u}_i }/{\partial \Phi _{-i}}}\\ {{\partial \dot{\Phi }_i}/{\partial \Theta }}&{}{{\partial \dot{\Phi }_i}/{\partial u_i }}&{} {{\partial \dot{\Phi }_i }/{\partial \Phi _i }}&{} {{\partial \dot{\Phi }_i}/{\partial \Phi _{-i}}} \\ {{\partial \dot{\Phi }_{-i}}/{\partial \Theta }}&{}{{\partial \dot{\Phi }_{-i} }/{\partial u_i }}&{} {{\partial \dot{\Phi }_{-i} }/{\partial \Phi _i }}&{} {{\partial \dot{\Phi }_{-i}}/{\partial \Phi _{-i}}}\\ \end{array}}}\right] \end{aligned}$$

It is obvious \(J_{21}^0 =0\), \(J_{23}^0 =0\), \(J_{24}^0 =0\), \(J_{31}^0 =0\), \(J_{32}^0 =0\), and \(J_{34}^0 =0\) owing to \(u_i^{*} =0\) and \(\Phi _i^{*} =0\). Moreover, \(J_{22}^0 =J_{33}^0 <0\) is the direct result of \(\mathop {\lim }\limits _{t\rightarrow \infty }{\dot{\Phi }_i }/{\Phi _i}=\mathop {\lim }\limits _{t\rightarrow \infty } {\dot{u}_i}/{u_i}<0\).Footnote 33

Equation (A.12) implies that \(J_{11}^0 \) and \(J_{14}^0 \), respectively, are given by

$$\begin{aligned} J_{11}^0 =-\Theta ^{{*}}\mathop {\lim }\limits _{t\rightarrow \infty } \frac{\partial ({\dot{K}}/{K)}}{\partial \Theta }\hbox { and }J_{14}^0 =\Theta ^{{*}}\left[ {-\mathop {\lim }\limits _{t\rightarrow \infty } \frac{\partial ({\dot{K}}/{K)}}{\partial \Phi _{-i} }+\sigma ^{-1}(\gamma _{-i} )^{\frac{\varepsilon }{\varepsilon -1}}\alpha _{-i} } \right] \end{aligned}$$

where \(\mathop {\lim }\limits _{t\rightarrow \infty } \frac{\partial ({\dot{K}}/{K)}}{\partial \Theta }=-\frac{\alpha _{-i} (1-\varphi _{-i} )}{1+\alpha _{-i} (1-\varphi _{-i} )}\) and \(\mathop {\lim }\limits _{t\rightarrow \infty } \frac{\partial ({\dot{K}}/{K)}}{\partial \Phi _{-i} }=\frac{\alpha _{-i} (1-\varphi _{-i} )(\gamma _{-i} )^{\frac{\varepsilon }{\varepsilon -1}}}{\alpha _{-i} (1-\varphi _{-i} )+1}\) from Eqs. (A.15) and (A.16).

Equation (A.13) implies that \(J_{41}^0 \) and \(J_{44}^0 \), respectively, are given by

$$\begin{aligned} J_{41}^0= & {} \Phi _{-i}^{*} \left[ {\frac{1}{1-\varphi _{-i} }+\alpha _{-i} -1} \right] \mathop {\lim }\limits _{t\rightarrow \infty } \frac{\partial ({\dot{K}}/{K})}{\partial \Theta }\hbox { and }J_{44}^0\\= & {} \Phi _{-i}^{*} \left[ {\frac{1}{1-\varphi _{-i} }+\alpha _{-i} -1} \right] \mathop {\lim }\limits _{t\rightarrow \infty } \frac{\partial ({\dot{K}}/{K})}{\partial \Phi _{-i}} \end{aligned}$$

It is obvious that \(J_{11}^0 +J_{44}^0 =(\sigma -1)(1-\alpha _{-i} )(1-\varphi _{-i} )[(1-\alpha _{-i} )(1-\varphi _{-i} )-1]^{-1}\nu +(\rho -\nu \sigma )>0\) from the assumption of the STVC in Proposition 4, and \(J_{11}^0 J_{44}^0 -J_{41}^0 J_{14}^0 \) is given by

$$\begin{aligned}&J_{11}^0 J_{44}^0 -J_{41}^0 J_{14}^0 =-\left[ (1-\alpha _{-i} )(1-\varphi _{-i} )-1\right] \sigma ^{-1}\\&\left[ 1+\alpha _{-i} (1-\varphi _{-i} )\right] ^{-1}(\alpha _{-i} )^{2}\Theta ^{{*}}\Phi _{-i}^{*} (\gamma _{-i} )^{\frac{\varepsilon }{\varepsilon -1}} \end{aligned}$$

The assumption that guarantees sustainable economic growth in Proposition 4, \((1-\alpha _{-i} )(1-\varphi _{-i} )>1\), implies \(J_{11}^0 J_{44}^0 -J_{41}^0 J_{14}^0 <0\). Therefore, the Jacobian of the dynamical system for sector-biased technical change has three negative real roots and a positive real root; thus, the dynamic system will be locally indeterminate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P. Endogenous sector-biased technical change and perpetual and transient structural change. J Econ 123, 195–223 (2018). https://doi.org/10.1007/s00712-017-0555-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00712-017-0555-3

Keywords

JEL Classification

Navigation