Skip to main content
Log in

Mineral chemistry, petrogenesis and evolution of the Ghorveh-Seranjic skarn, Northern Sanandaj Sirjan Zone, Iran

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The Ghorveh-Seranjic (GS) skarn is located in the northern part of the Sanandaj-Sirjan zone, NW Iran, which is part of Alpine-Himalaya orogenic belt. The GS metamorphic complex is the oldest unit in the GS area composed of marble, dolomitic marble, greenschist, and amphibolite of Early Jurassic age. The complex is intruded by NW-SE trending Late Jurassic peraluminous granitoids, which caused contact metamorphism and resulted in the development of skarn, hornfels and crystallization of marble. The skarn is showing distinct textural, mineralogical and geochemical zonation. At least four stages of skarn development have been recognized; stage I, clinopyroxene+garnet±vesuvianite±quartz±calcite±scheelite± pyrrhotite; stage II, garnet+clinopyroxene +vesuvianite+scheelite±apatite+calcite±pyrrhotite; stage III, amphibole+vesuvianite+epidote+chlorite±quartz±calcite±pyrrhotite±pyrite±chalcopyrite and stage IV, quartz+calcite±amphibole±epidote±chlorite±pyrite±chalcopyrite. Scheelite occurs in stages 1 and 2 together with garnet and clinopyroxene, and its abundance slightly increases with vesuvianite growth. In general, mineral chemistry of the GS skarn shows enrichment in Ca, Al and Mg. Two types of garnet, clinopyroxene and vesuvianite are identified in the prograde stage within the GS skarn. Variable Mg:Mn:Fe proportions in clinopyroxene of the early prograde stage suggest formation from a relatively homogeneous F-rich volatile phase. Mineralogical documentation of the GS skarn indicates that presence of the F-rich volatile phase affected zoning patterns and mineral abundances. Addition of fluorine increases the solubility of Al in the hydrothermal fluid by forming strong Al-F complexes, causing an increase in vesuvianite instead of clinopyroxene during the late prograde substage, resulting in high garnet/clinopyroxene ratios. The presence of granditic (grossular-andradite) and subcalcic (grossular-almandine-spessartine) garnet during the skarn evolution suggests variable Fe/Mn and Fe2+/Fe3+ ratios during the prograde stage of the skarn formation. Subcalcic garnet formed in a relatively reduced environment compared to the granditic garnet. Paragenetic reconstructions indicate that clinopyroxene, garnet and scheelite grew together during the prograde stage. These minerals were stable and coexisted at temperatures between 580 °C and 400 °C and at a logfO2 = −18 to −28.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdi M (2007) Lithogeochemistry and genesis of mineralization at Deh-Hossein and Nezam-Abad W-Sn (Cu) deposits and comparison with Bamsar deposit, SW Shazand, Arak. MSc thesis, Tarbiat Modares University, Tehran (in Persian with English abstract)

  • Arai H (2010) A function for the R programming language to recast garnet analyses into end-members: Revision and porting of Muhling and Griffin's method. Comput Geosci-UK 36:406–409

    Google Scholar 

  • Armbruster T, Bonazzi P, Akasaka M, Bermanec V, Chopin C, Giere R, Assbichiler SH, Liebscher A, Menchetti S, Pan Y, Pasero M (2006) Recommended nomenclature of epidote-group minerals. Eur J Mineral 18:551–567

    Google Scholar 

  • Azizi H, Asahara Y (2013) Juvenile granite in the Sanandaj-Sirjan zone, NW Iran: Late Jurassic-Early Cretaceous arc-continent collision. Int Geol Rev 55:1523–1540

    Google Scholar 

  • Azizi H, Chung SL, Tanaka T, Asahara Y (2011a) Isotopic dating of the Khoy metamorphic complex (KMC), northwestern Iran: a significant revision of the formation age and magma source. Precambrian Res 185:87–94

    Google Scholar 

  • Azizi H, Asahara Y, Mehrabi B, Chung SL (2011b) Geochronological and geochemical constraints on the petrogenesis of high-K granite from the Suffiabad area, Sanandaj-Sirjan Zone, NW Iran. Chem Erde - Geochem 71:363–376

    Google Scholar 

  • Azizi H, Beiranvand MZ, Asahara Y (2015a) Zircon U-Pb ages and petrogenesis of a tonalite-trondhjemite-granodiorite (TTG) complex in the Northern Sanandaj-Sirjan Zone, Northwest Iran: evidence for Late Jurassicarc-continent collision. Lithos 216-217:178–195

    Google Scholar 

  • Azizi H, Najari M, Asahara Y, Catlos EJ, Shimizu M, Yamamoto K (2015b) U-Pb zircon ages and geochemistry of Kangareh and Taghiabad mafic bodies in northern Sanandaj-Sirjan Zone, Iran: Evidence for intra-oceanic arc and back-arc tectonic regime in Late Jurassic. Tectonophysics 660:47–64

    Google Scholar 

  • Azizi H, Mohammadi K, Asahara Y, Tsuboi M, Daneshvar N, Mehrabi B (2016) Strongly peraluminous leucogranite (Ebrahim-Attar granite) as evidence for extensional tectonic regime in the Cretaceous, Sanandaj-Sirjan zone, northwest Iran. Chem Erde - Geochem 76:529–541

    Google Scholar 

  • Barati M (2012) Mineralogy, geochemistry and S isotope in Galali skarn deposit, W Iran. Iranian Journal of Crystallography and Mineralogy 20:215–228

    Google Scholar 

  • Barati M, Gholipoor M (2014) Study of REE behaviors, fluid inclusions, and O, S stable Isotopes in Zafar-abad iron skarn deposit, NW Divandarreh, Kordestan province. J Econ Geol 6:5–6 (in Persian with English abstract)

    Google Scholar 

  • Berger J, Femenias O, Mercier JCC, Demaiffe D (2005) Ocean floor hydrothermal metamorphism in Limousin ophiolites (Western French Massif Central): evidence of a rare preserved Variscan oceanic marker. J Metamorph Geol 23:795–812

    Google Scholar 

  • Bozkurt E, Winchester JGA, Piper JDA (2000) Tectonics and Magmatism in Turkey and the Surrounding Area. Geol Soc London Spec Publ, no 173

  • Brown PE, Bowman JR, Kelly WC (1985) Petrologic and stable isotope constraints on the source and evolution of skarn-forming fluids at Pine Creek, California. Economic Geology 80(1):72–95

    Google Scholar 

  • Burton JC, Taylor LA, Chou IM (1982) The fO2-T and fS -T stability relations of hedenbergite and of hedenbergite-johannsenite solid solutions. Econ Geol 77:764–783

    Google Scholar 

  • Capitani GC, Mellini M (2000) The johannsenite-hedenbergite complete solid solution clinopyroxenes from the Campiglia Marittima skarn. Eur J Mineral 12:1215–1227

    Google Scholar 

  • Cepedal A, Martin-Izard A, Reguilón R, Rodriguez-Pevida L, Spiering E, Gonzălez-Nistal S (2000) Origin and evolution of the calcic and magnesian skarns hosting the El Valle-Boinăs copper-gold deposit, Asturias (Spain). J Geochem Explor 71(2):119–151

    Google Scholar 

  • Chowdhury S, Lentz DR (2011) Mineralogical and geochemical characteristics of scheelite-bearing skarns and genetic relations between skarn mineralization and petrogenesis of the associated granitoid pluton at Sargipali, Sundergarh District, Eastern India. J Geochem Explor 108:39–61

    Google Scholar 

  • Ciobanu CL, Cook NJ (2004) Skarn textures and a case study: the Ocna de Fier-Dognecea orefield, Banat, Romania. Ore Geol Rev 24(3):315–370

    Google Scholar 

  • Daneshvar N (2012) Lithogeochemistry of tungsten Ebrahim-Attar mineralization, southwest of Ghorveh, Iran. MSc thesis, Kharazmi University, Tehran (in Persian with English abstract)

  • Deer WA, Howie RA, Zussman J (1992) An introduction to the rock-forming minerals. 2nd edn. Longman, Burnt Mill, England, 696 pp

  • Dick LA, Hodgson CJ (1982) The MacTung W-Cu (Zn) contact metasomatic and related deposits of the northeastern Canadian Cordillera. Econ Geol 77:845–867

    Google Scholar 

  • Dilek Y, Imamverdiyev N, Altunkaynak S (2010) Geochemistry and tectonics of Cenozoic volcanism in the Lesser Caucasus (Azerbaijan) and the peri-Arabian region: collision-induced mantle dynamics and its magmatic fingerprint. Int Geol Rev 52:536–578

    Google Scholar 

  • Dimanov A, Wiedenbeck M (2006) (Fe, Mn)-Mg interdiffusion in natural diopside: effect of fO2. Eur J Mineral 18:705–718

    Google Scholar 

  • Dingwell DB, Brearley M (1985) Mineral chemistry of igneous melanite garnets from analcite-bearing volcanic rocks, Alberta, Canada. Contrib Mineral Petrol 90:29–35

    Google Scholar 

  • Dobson DC (1982) Geology and alteration of the Lost River tin-tungsten-fluorine deposit, Alaska. Econ Geol 77:1033–1052

    Google Scholar 

  • Einaudi MT, Burt DM (1982) Introduction-terminology, classification and composition of skarn deposits. Econ Geol 77:745–754

    Google Scholar 

  • Einaudi MT, Meinert LD, Newberry RJ (1981) Skarn deposits. In: Skinner BJ (ed) Economic Geology Seventy-fifth Anniversary Volume. Soc Econ Geol, Boulder, pp 317–391

    Google Scholar 

  • Falcon N (1974) Southern Iran: Zagros Mountains. In: Spencer, A.M., Ed., Mesozoic-Cenozoic Orogenic Belts. J Geol Soc Lond 4:199–211

    Google Scholar 

  • Fonteilles M, Soler P, Demange M, Derre C, Krier-Schellen AD, Verkaeren J, Guy B, Zahm A (1989) The scheelite skarn deposit of Salau (Ariege, French Pyrenees). Econ Geol 84:1172–1209

    Google Scholar 

  • Gamble RP (1982) An experimental study of sulfidation reactions involving andradite and hedenbergite. Econ Geol 77:784–797

    Google Scholar 

  • Gaspar LM, Inverno CMC (2000) Mineralogy and metasomatic evolution of distal strata-bound scheelite skarns in the Riba de Alva Mine, Northeastern Portugal. Econ Geol 95:1259–1275

    Google Scholar 

  • Ghorbani M (2007) Economic geology of mineral and natural resources of Iran. Arian Zamin, Tehran, p 492 (in Persian)

    Google Scholar 

  • Ghorbani M (2013) The economic geology of Iran: mineral deposits and natural resources. Springer Science Business Media, Dordrecht, p 581

    Google Scholar 

  • Gordon TM, Greenwood HJ (1971) The stability of grossular in H2O-CO2 mixtures. Am Mineral 56:1674–1688

    Google Scholar 

  • Grammatikopoulos TA, Clark AH (2006) A comparative study of wollastonite skarn genesis in the Central Metasedimentary Belt, southeastern Ontario, Canada. Ore Geol Rev 29(2):146–161

    Google Scholar 

  • Gray RF, Hoffman VJ, Bagan RJ, McKinley HL (1968) Bishop tungsten district, California. In: Ridge, J.D. (Ed.), Ore deposit of the United States, 1933–1967 (Graton-Sales vol.). New York, Am. Inst. Mining Metall. Petroleum Engineers, pp. 1531–1554

  • Greenwood HJ (1967) Wollastonite: Stability in H2O-CO2 mixtures and occurrence in a contact-metamorphic aureole near Salmo, British Columbia, Canada. Am Mineral 52:1669–1680

    Google Scholar 

  • Gustafson WI (1974) The stability of andradite, hedenbergite, and related minerals in the system Ca-Fe-SiO-H. J Petrol 15(3):455–496

    Google Scholar 

  • Hassanzadeh J, Stockli DF, Horton BK, Axen GJ, Stockli LD, Grove M, Schmitt AK, Walker JD (2008) U-Pb zircon geochronology of late Neoproterozoic. Early Cambrian granitoids in Iran: implications for paleogeography, magmatism, and exhumation history of Iranian basement. Tectonophysics 451:71–96

    Google Scholar 

  • Hochella MF, Liou JG, Keskinen MJ, Kim HS (1982) Synthesis and stability relations of magnesium idocrase. Econ Geol 77:798–808

    Google Scholar 

  • Hosseini M (1999) Geological map of Qorveh, scale 1:100000. Geological Survey of Iran

    Google Scholar 

  • Jahns RH (1944) Ribbon rock, an unusual beryllium tactite. Econ Geol 39(3):173–205

    Google Scholar 

  • Kamvong T, Zaw K (2009) The origin and evolution of skarn-forming fluids from the Phu Lon deposit, northern Loei Fold Belt, Thailand: evidence from fluid inclusion and sulfur isotope studies. J Asian Earth Sci 34(5):624–663

    Google Scholar 

  • Kwak TAP (1986) Fluid inclusions in skarn (carbonate replacement deposits). J Metamorph Geol 4:363–384

    Google Scholar 

  • Kwak TAP (1987) W-Sn skarns deposits and related metamorphic skarns and granitoids. Dev Econ Geol 24:451

    Google Scholar 

  • Kwak TAP, Askins PW (1981) Geology and genesis of the F-Sn-W (-Be-Zn) skarn (wrigglite) at Moina, Tasmania. Econ Geol 76:439–467

    Google Scholar 

  • Kwak TAP, Tan TH (1981) The geochemistry of zoning in skarn minerals at the king Island (Dolphin) mine. Econ Geol 76:468–497

    Google Scholar 

  • Le Anderson PJ (1981) Calculation of temperature and X(CO2) values for tremolite-Kfeldspar- diopside-epidote assemblages. Can Mineral 19:619–630

    Google Scholar 

  • Leak BE (1978) Nomenclature of amphiboles. Mineral Mag 42:533–563

    Google Scholar 

  • Lehrmann B, Oliver NH, Rubenach MJ, Georgees C (2009) The association between skarn mineralisation and granite bodies in the Chillagoe region, North Queensland, Australia. J Geochem Explor 101(1):58

    Google Scholar 

  • Liou JG (1974) Stability relations of andradite-quartz in the system Ca-Fe-Si-O-H. Am Mineral 59:1016–1025

    Google Scholar 

  • Lummen GM, Verkaeren J (1986) Physicochemical study of skarn formation in pelitic rock, Costabonne peak area, eastern Pyrenees, France. Contrib Mineral Petrol 93:77–88

    Google Scholar 

  • Mahmoudi S, Corfu F, Masoudi F, Mehrabi B, Mohajjel M (2011) U-Pb dating and emplacement history of granitoid plutons in the northern Sanandaj-Sirjan Zone, Iran. J Asian Earth Sci 41:238–249

    Google Scholar 

  • Mathieson GA, Clark AH (1984) The Cantung E Zone scheelite skarn orebody, Tungsten, Northwest Territories; a revised genetic model. Economic Geology 79(5):883–901

    Google Scholar 

  • Meinert LD (1987) Skarn zonation and fluid evolution in the Groundhog mine, Central mining district, New Mexico. Econ Geol 82:523–545

    Google Scholar 

  • Meinert LD (1993) Igneous petrogenesis and skarn deposits. Geol Assoc Can Spec Pap 40:569–583

    Google Scholar 

  • Meinert LD (1995) Compositional variation of igneous rocks associated with skarn deposits-chemical evidence for a genetic connection between petrogenesis and mineralization. Mineral Assoc Canada, Short Course Series 23:401–418

    Google Scholar 

  • Meinert LD, Newberry RJ, Einaudi MT (1980) An overview of tungsten, copper, and zinc-bearing skarns in western North America U.S. Geological Survey Open-File Report 81-355:304–327

    Google Scholar 

  • Meinert LD, Hedenquist JW, Satoh H, Matsuhisa Y (2003) Formation of anhydrous and hydrous skarn in Cu-Au ore deposits by magmatic fluids. Econ Geol 98:147–156

    Google Scholar 

  • Meinert LD, Dipple GM, Nicolescu S (2005) World skarn deposits. Society of Economic Geologists, Econ Geol 100th Anniversary Volume 299–336

    Google Scholar 

  • Mohajjel M, Fergusson C (2014) Jurassic to Cenozoic tectonics of the Zagros Orogen in northwestern Iran. Int Geol Rev 56(3):263–287

    Google Scholar 

  • Mohajjel M, Fergusson C, Sahandi M (2003) Cretaceous-Tertiary convergence and continental collision, Sanandaj-Sirjan zone, western Iran. J Asian Earth Sci 21(4):397–412

    Google Scholar 

  • Momenzadeh M (1976) Stratabound lead zinc ores in the lower Cretaceous and Jurassic sediments in the Malayer-Esfahan District (West Central Iran): litology, metal content, zonation and genesis PhD Thesis, University of Heidelberg, Heidelberg

  • Moon KJ (1983) The genesis of the Sangdong tungsten deposit, the Republic of Korea: Unpublished Ph.D. thesis, Hobart, University of Tasmania, 366 p

  • Nakano T (1989) Fluctuation model for compositional heterogeneity of skarn clinopyroxenes. Geochem J 23:91–99

    Google Scholar 

  • Nakano T (1991) An antipathetic relation between the hedenbergite and johannsenite components in skarn clinopyroxene from the Kagata tungsten deposit, Central Japan. Can Mineral 29:427–434

    Google Scholar 

  • Newberry RJ (1982) Tungsten-bearing skarns of the Sierra Nevada. I. The Pine Creek Mine. California Econ Geol 77:823–844

    Google Scholar 

  • Newberry RJ (1983) The formation of subcalcic garnet in scheelite-bearing skarns. Can Mineral 21:529–544

    Google Scholar 

  • Newberry RJ (1998) W- and Sn-skarn deposits. Mineral Assoc Canada, Short Course Series 26:289–335

    Google Scholar 

  • Newberry RJ, Einaudi MT (1981) Tectonic and geochemical setting of tungsten skarn mineralization in Cordillera. In: Dickson WR, Payne, WD (eds) Relations of tectonics to ore deposits in the Southern Cordillera. XIV. AGS Digest:99–111

  • Newberry RJ, Swanson SE (1986) Scheelite skarn granitoids: an evaluation of the roles of magmatic source and process. Ore Geol Rev 1:57–81

    Google Scholar 

  • Newberry RJ, Allegro GL, Cutler SE, Hagen-Levelle JH, Adams DD, Nicholson LC, Weglarz TB, Bakke AA, Clautice KH, Coulter GA, Ford MJ, Myers GL, Szumigala DJ (1997) Skarn deposits of Alaska. Econ Geol Monogr 9:355–395

    Google Scholar 

  • Newton RC (1966) Some calc-silicate equilibrium relations. Am J Sci 201:204–222

    Google Scholar 

  • Orhan A (2017) Evolution of the Mo-rich scheelite skarn mineralization at Kozbudaklar, Western Anatolia, Turkey: Evidence from mineral chemistry and fluid inclusions. Ore Geol Rev 80:141–165

    Google Scholar 

  • Paydar GR (2016) Polygenetic Iron Mineralization in the Baba-Ali and Galali Deposits, further evidences from stable (S, O, H) isotope data, NW Hamedan, Iran. International Journal of Geological and Environmental Engineering 10(2)

  • Paydar GR, Lotfi M, Ghaderi M, Amiri A, Vosooghi-Abedini M (2010) New results on mineralography and crystal chemistry of magnetite and pyrite at Baba-Ali & Galali iron deposits, west of Hamadan, Iran. GEOSCIENCES 20:121–130 (in Persian with English abstract)

    Google Scholar 

  • Pouchou JL, Pichoir F (1984) A new model for quantitative analyses. I. Application to the analysis of homogeneous samples. La Rech Aérospatiale 3:13–38

    Google Scholar 

  • Pouchou JL, Pichoir F (1985) "PAP" (φρ-Z) correction procedure for improved quantitative microanalysis. Microb Anal 203:104–106

    Google Scholar 

  • Rasmussen KL, Lentz DR, Falck H, Pattison D RM (2011) Felsic magmatic phases and the role of late-stage aplitic dykes in the formation of the world-class Cantung Tungsten skarn deposit, Northwest Territories, Canada. Ore Geology Reviews 41(1):75-11110.2113/gsecongeo.80.1.72

    Google Scholar 

  • Ravna EK (2000) The garnet-clinopyroxene Fe2+-Mg geothermometer: an updated calibration. J Metamorph Geol 18:211–219

    Google Scholar 

  • Robertson AHF, Parlak O, Rízaoğlu T, Űnlügenç Ű, İnan N, Tasli K, Ustaȍmer T (2007) Tectonic evolution of the South Tethyan Ocean: evidence from the Eastern Taurus Mountains (Elaziğ region, SE Turkey). J Geol Soc Lond 272:231–270

    Google Scholar 

  • Salami S, Sepahi AA, Maanijou M (2013) Ebrahimattar pegmatite, skarn and related rocks. Iranian Journal of Crystallography and Mineralogy 2:309–322 (in Persian with English abstract)

    Google Scholar 

  • Singoyi B, Zaw K (2001) A petrological and fluid inclusion study of magnetite–scheelite skarn mineralization at Kara, Northwestern Tasmania, Implications for ore genesis. Chem. Geol. 173, 239–253

    Google Scholar 

  • Shahbazi H, Siebel W, Pourmoafee M, Ghorbani M, Sepahi AA, Shang CK, Abedini MV (2010) Geochemistry and U-Pb zircon geochronology of the Alvand plutonic complex in Sanandaj-Sirjan Zone (Iran): new evidence for Jurassic magmatism. J Asian Earth Sci 39:668–683

    Google Scholar 

  • Shahbazi H, Siebel W, Ghorbani M, Pourmoafee M, Sepahi AA, Abedini MV, Shang CK (2015) The Almogholagh pluton, Sanandaj-Sirjan zone, Iran: geochemistry, U-(Th)-Pb titanite geochronology and implications for its tectonic evolution. Neues Jb Mineral Abh 192:85–99

    Google Scholar 

  • Shakerardakani F, Neubauer F, Masoudi F, Mehrabi B, Liu X, Dong Y, Mohajjel M, Monfaredi B, Friedl G (2015) Pan-African basement and Mesozoic gabbro in the Zagros orogenic belt in the Dorud-Azna region (NW Iran): Laser-ablation ICP-MS zircon ages and geochemistry. Tectonophysics 647-648:146–171

    Google Scholar 

  • Sheikhi F, Alaminia Z, Tabakh-Shabani AA (2012) Seranjic skarn geothermometery, SW Ghorveh, Kurdestan, Iran. Iranian Journal of Crystallography and Mineralogy 20:343–355 (in Persian with English abstract)

    Google Scholar 

  • Shimazaki H (1977) Grossular- spessartine- almandine garnets from some Japanese scheelite skarns. Can Mineral 15:74–80

    Google Scholar 

  • Shimazaki H (1980) Characteristics of skarn deposits and related acid magmatism in Japan. Econ Geol 75:173–183

    Google Scholar 

  • Steven NM, Moore JM (1994) Pan-African tungsten skarn mineralization at the Otjua prospect, Central Namibia. Econ Geol 89:1431–1453

    Google Scholar 

  • Stocklin J (1968) Structural history and tectonics of Iran: a review. AAPG Bull 52:1229–1258

    Google Scholar 

  • Sweeney MJ (1980) Geochemistry of garnets from the North Ore shoot, Bingham district, Utah. MSc thesis, University of Utah, Salt Lake City

  • Timon Sanchez SM, Moro Benito MC, Cembranos Perez ML (2009) Mineralogical and physiochemical evolution of the Los Santos scheelite skarn, Salamanca, NW Spain. Econ Geol 104:961–995

    Google Scholar 

  • Wesolowski D, Ohmoto H (1986) Calculated oxygen isotope fractionation factors between water and the minerals scheelite and powellite. Economic Geology 81(2):471–477

    Google Scholar 

  • Wesolowski D, Cramer JJ, Ohmoto H (1988) Scheelite mineralization in skarns adjacent to Devonian granitoids at King Island, Tasmania, in Taylor RO, Strong DF, edn, Recent advances in the geology of granite related mineral deposits. Canadian Institute of Mining and Metallurgy 235-251

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95(1):185–187

    Google Scholar 

  • Yajam S, Montero P, Scarrow JH, Ghalamghash J, Razavi SMH, Bea F (2015) The spatial and compositional evolution of the Late Jurassic Ghorveh-Dehgolan plutons of the Zagros Orogen, Iran: SHRIMP zircon U-Pb and Sr and Nd isotope evidence. Geol Acta 13:25–43

    Google Scholar 

  • Yavuz F (2013) WinPyrox: A Windows program for pyroxene calculation classification and thermobarometry. Am Mineral 98:1338–1359

    Google Scholar 

  • Zamanian H (2007) Geology of the Gelali iron mineralization related to the south Ghorveh batholith, western Iran. J Earth Sci 1:47–65

    Google Scholar 

  • Zamanian H, Radmard K (2016) Geochemistry of rare earth elements in the Baba-Ali magnetite skarn deposit, western Iran-a key to determine conditions of mineralization. Geologos 22:33–47

    Google Scholar 

  • Zaw K (1976) The CanTung E-zone orebody, Northwest Territories: A major scheelite skarn deposit. MSc thesis, Queen's University, Kingston

  • Zaw UK, Clark AH (1978) Fluoride-hydroxyl ratios of skarn silicates, Cantung E-zone scheelite orebody, Tungsten, Northwest Territories. Can Mineral 16:207–221

    Google Scholar 

  • Zaw K, Singoyi B (2000) Formation of magnetite-scheelite skarn mineralization at Kara, Northwestern Tasmania: evidence from mineral chemistry and stable isotopes. Econ Geol 95:1215–1230

    Google Scholar 

  • Zuo P, Liua X, Haob J, Wang Y, Zhao R, Ge S (2015) Chemical compositions of garnet and clinopyroxene and their genetic significances in Yemaquan skarn iron-copper-zinc deposit. Qimantagh, eastern Kunlun. J Geochem Explor 158:143–154

    Google Scholar 

Download references

Acknowledgments

This work is part of the Ph.D thesis of Z.A. Authors would like to thank Marcello Serracino and Marco Albano for providing EPMA and SEM analyses (Sapienza University) and Tom Knott for XRF analyses (Leicester University). We are very grateful to Andy Saunders, Franz Neubauer, Hossein Azizi, and Mir-Saleh Mirmohammadi for their constructive comments on a preliminary draft of the manuscript. We acknowledge Franz Neubauer and Andy Saunders for English editing of the manuscript. Constructive comments by three anonymous reviewers, journal associate editors Paolo Stefano Garofalo and Christoph Hauzenberger and editor-in-chief Lutz Nasdala are gratefully acknowledged. Authors also would like to acknowledge partial financial support by the Ministry of Science, Research and Technology (MSRT), Kharazmi University and Iran National Science Foundation (Grant No. 91058052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zohreh Alaminia.

Additional information

Editorial handling: C. Hauzenberger

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alaminia, Z., Mehrabi, B., Razavi, S.M.H. et al. Mineral chemistry, petrogenesis and evolution of the Ghorveh-Seranjic skarn, Northern Sanandaj Sirjan Zone, Iran. Miner Petrol 114, 15–38 (2020). https://doi.org/10.1007/s00710-019-00688-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-019-00688-6

Keywords

Navigation