Skip to main content
Log in

Crystal chemistry of dorrite from the Eifel volcanic region, Germany, and chemical variations in the khesinite-dorrite-rhönite-kuratite solid-solution system

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Dorrite, khesinite and rhönite from metamorphosed calcic xenoliths of the Bellerberg paleovolcano (Eifel, Germany) were studied, including first determination of the crystal structure of natural dorrite (R = 0.0636). Dorrite is triclinic, P-1, unit-cell parameters are: a = 10.4316(7), b = 10.8236(9), c = 8.9488(7) Å, α = 105.972(6), β = 96.003(9), γ = 124.67(10)° and V = 754.10(11) Å3. Its crystal-chemical formula is (Z = 1): M8Ca2M9Ca2M1Fe3 + M2Fe3 + M3(Fe3+0.8Mg0.2)2M4(Fe3+0.8Mg0.2)2M5(Mg0.9Fe3+0.1)2M6(Mg0.5Fe3+0.5)2M7(Fe3+0.9Al0.1)2[T1(Al0.75Si0.20Fe3+0.05)2T2(Al0.77Si0.20Fe3+0.03)2T3(Al0.9Fe3+0.1)2T4Si2T5(Fe3+0.6Al0.4)2T6(Fe3+0.6Al0.4)2]O40. New and earlier published data show that khesinite, dorrite, rhönite and kuratite form a solid-solution system without significant gaps. The chemical variation and isomorphous substitutions in this system are discussed and the following simplified formulae are suggested: dorrite, Ca2(Fe3+,Mg)5Mg[(Al,Fe3+,Si)5SiO20], khesinite, Ca2(Fe3+,Mg)5Mg[(Fe3+,Al,Si)5SiO20], and rhönite, Ca2(Mg,Fe3+)5Ti[(Si,Al)6O20].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agilent Technologies (2014) CrysAlisPro software system, version 1.171.37.35. Agilent Technologies UK Ltd Oxford, UK

  • Bonaccorsi E, Merlino S, Pasero M (1990) Rhönite: structural and microstructural features, crystal chemistry and polysomatic relationships. Eur J Mineral 2:203–218

    Article  Google Scholar 

  • Chesnokov BV, Shcherbakova EP (1991) The mineralogy of burnt dumps in the Chelyabinsk Coal Basin. Nauka Publishing, Moscow (in Russian)

    Google Scholar 

  • Chesnokov BV, Bushmakin AF, Bazhenova LF, Vilisov VA, Kretser YL, Nishanbaev TP (1993a) New minerals from burnt dumps of the Chelyabinsk coal basin (fourth report). Ural’skiy Mineralogicheskiy Sbornik 1:3–25 (in Russian)

    Google Scholar 

  • Chesnokov BV, Vilisov VA, Bazhenova LF, Bushmakin AF, Kotlyarov VA (1993b) New minerals from burnt dumps of the Chelyabinsk coal basin (fifth report). Ural’skiy Mineralogicheskiy Sbornik 2:3–36 (in Russian)

    Google Scholar 

  • Chesnokov BV, Shcherbakova EP, Nishanbaev TP (2008) Minerals of burned dumps of the Chelyabinsk Coal Basin. Institute of Mineralogy, RAS Ural Branch (in Russian)

  • Chukanov NV, Rozenberg KA, Rastsvetaeva RK, Möckel S (2008) New data on titanium-rich biotite: a problem of “wodanite”. New Data Miner 43:72–77

    Google Scholar 

  • Chukanov NV, Mukhanova AA, Rastsvetaeva RK, Belakovskiy DI, Möckel S, Karimova OV, Britvin SN, Krivovichev SV (2011) Oxyphlogopite K(mg,Ti,Fe)3[(Si,Al)4O10](O,F)2: a new mineral species of the mica group. Geol Ore Dep 53(7):583–590

    Article  Google Scholar 

  • Cosca MA, Rouse RR, Essene EJ (1988) Dorrite [Ca2(Mg2Fe3+ 4)(Al4Si2)O20], a new member of the aenigmatite group from a pyrometamorphic melt-rock. Am Mineral 73:1440–1448

    Google Scholar 

  • Galuskina IO, Galuskin EV, Pakhomova AS, Widmer R, Armbruster T, Grew ES, Vapnik Y, Dzierażanowski P, Murashko M (2017) Khesinite, Ca4Mg2Fe3+ 10O4[(Fe3+ 10Si2)O36], a new rhönite-group (sapphirine supergroup) mineral from the Negev Desert, Israel– natural analogue of the SFCA phase. Eur J Mineral 29:101–116

    Article  Google Scholar 

  • Grapes RH, Keller J (2010) Fe2+-dominant rhönite in undersaturated alkaline basaltic rocks, Kaiserstuhl volcanic complex, upper Rhine graben, SW Germany. Eur J Mineral 22:285–292

    Article  Google Scholar 

  • Grapes RH, Wysoczanski RJ, Hoskin PWO (2003) Rhönite paragenesis in pyroxenite xenoliths, mount Sidley volcano, Marie Byrd Land, West Antarctica. Mineral Mag 67:639–651

    Article  Google Scholar 

  • Grew ES, Hålenius U, Pasero M, Barbier J (2008) Recommended nomenclature for the sapphirine and surinamite groups (sapphirine supergroup). Mineral Mag 72:839–876

    Article  Google Scholar 

  • Hentschel G. (1987) Die Mineralien der Eifelvulkane, Weise Verlag, München. 2nd Edition (in German)

  • Hwang SL, Shen P, Chu HT, Yui TF, Varela ME, Iizuka Y (2016) Kuratite, Ca4(Fe2+ 10Ti2)O4[Si8Al4O36], the Fe2+-analogue of rhönite, a new mineral from the D'Orbigny angrite meteorite. Mineral Mag 80:1067–1076

    Article  Google Scholar 

  • Jensen BB (1996) Solid solution among members of the aenigmatite group. Mineral Mag 60:982–986

    Article  Google Scholar 

  • Johnston AD (1985) Compositional variation of naturally occurring rhoenite. Am Mineral 70:1211–1216

    Google Scholar 

  • Kunzmann T (1999) The aenigmatite-rhönite mineral group. Eur J Mineral 11:743–756

    Article  Google Scholar 

  • Merlino S (1972) X-ray crystallography of krinovite. Z Kristallogr 136:81–88

    Article  Google Scholar 

  • Mills SJ, Hatert F, Nickel EH, Ferraris G (2009) The standardization of mineral group hierarchies: application to recent nomenclature proposals. Eur J Mineral 21:1073–1080

    Article  Google Scholar 

  • Peretyazhko IS, Savina EA, Khrоmova EA (2017) Minerals of the rhönite-kuratite series in paralavas from a new combustion metamorphic complex in the choir–Nyalga basin (Central Mongolia): composition, mineral assemblages and formation conditions. Mineral Mag 81:949–974

    Article  Google Scholar 

  • Petříček V, Dušek M, Palatinus L (2006) Jana2006. Structure determination software programs. Institute of Physics, Praha, Czech Republic

  • Schüller W (2013) Microminerals of the Bellerberg Volcanics, Eifel region, Rhineland Palatinate, Germany. Mineral Rec 44:149–185

    Google Scholar 

  • Shchipalkina NV, Zubkova NV, Pekov IV, Koshlyakova NN (2016) Dorrite from Kopeisk, south Urals, Russia: crystal structure and cation ordering. N Jb Mineral Mh 193(3):275–282

    Article  Google Scholar 

  • Sugiyama K, Monkawa A, Sugiyama K (2005) Crystal structure of the SFCAM phase Ca2(Ca,Fe,Mg,Al)6(Fe,Al,Si)6O20. ISIJ Int 45:560–568

Download references

Acknowledgements

We are grateful to Sergey M. Aksenov for collecting of single-crystal XRD data and to anonymous reviewers for valuable comments. This study was supported by the Russian Science Foundation, grant no. 14-17-00048 (in part of electron probe studies of minerals), and the Russian Foundation for Basic Research, grant no. 18-05-00332 (in part of crystal structure studies).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadezhda V. Shchipalkina.

Additional information

Editorial handling: H. Poellmann

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shchipalkina, N.V., Pekov, I.V., Chukanov, N.V. et al. Crystal chemistry of dorrite from the Eifel volcanic region, Germany, and chemical variations in the khesinite-dorrite-rhönite-kuratite solid-solution system. Miner Petrol 113, 249–259 (2019). https://doi.org/10.1007/s00710-018-0645-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-018-0645-0

Keywords

Navigation