Skip to main content
Log in

Kimberlite emplacement and mantle sampling through time at A154N kimberlite volcano, Diavik Diamond Mine: lessons from the deep

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The Diavik Diamond Mine in the NWT of Canada has produced in excess of 100 million carats from 3 kimberlite pipes since mining commenced in 2002. Here, we present new findings from deep (>400 m below surface) mining, sampling and drilling work in the A154N kimberlite volcano that require a revision of previous geological and emplacement models and provide a window into how the sub-continental lithospheric mantle (SCLM) below Diavik was sampled by kimberlite magmas through time. Updated internal geological models feature two volcanic packages interpreted to represent two successive cycles of explosive eruption followed by active and passive sedimentation from a presumed crater-rim, both preceded and followed by intrusions of coherent kimberlite. Contact relationships apparent among the geological units allow for a sequential organization of as many as five temporally-discrete emplacement events. Representative populations of mantle minerals extracted from geological units corresponding to four of the emplacement events at A154N are analyzed for major and trace elements, and provide insights into the whether or not kimberlites randomly sample from the mantle. Two independent geothermometers using clinopyroxene and garnet data indicate similar source depths for clinopyroxenes and G9 garnets (130–160 km), and suggest deeper sampling with time for both clinopyroxene and garnets. Harzburgite is limited to 110–160 km, and appears more prevalent in early, low-volume events. Variable ratios of garnet parageneses from the same depth horizons suggest random sampling by passing magmas, but deeper garnet sampling through time suggests early preferential sampling of shallow/depleted SCLM. Evaluations of Ti, Zr, Y and Ga over the range of estimated depths support models of the SCLM underlying the central Slave terrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Amelin Y (1996) Report on Rb-Sr and U-Pb study of kimberlite samples VR44444A through VR44465A. Confidential report for Kennecott Canada Inc., 6 pp

  • Armienti P, Tarquini S (2002) Power law olivine crystal size distributions in lithospheric mantle xenoliths. Lithos 65:273–285

    Article  Google Scholar 

  • Arndt NT, Guitreau M, Boullier AM, Le Roex A, Tommasi A, Cordier P, Sobolev A (2010) Olivine, and the origin of Kimberlite. J Petrol 51:573–602

    Article  Google Scholar 

  • Aulbach S, Pearson NJ, O'reilly SY, Doyle BJ (2007) Origins of xenolithic eclogites and pyroxenites from the Central Slave Craton, Canada. J Petrol 48:1843–1873

    Article  Google Scholar 

  • Aulbach S, Griffin WL, Pearson NJ, O'Reilly SY (2013) Nature and timing of metasomatism in the stratified mantle lithosphere beneath the central Slave craton (Canada). Chem Geol 352:153–169

    Article  Google Scholar 

  • Barton ES (1996) Rb-Sr Mica age results from the Diavik kimberlite field. Confidential report for Kennecott Canada Inc. 5 pp

  • Bostock M (1998) Mantle stratigraphy and evolution of the Slave province. J Geophys Res–Sol Ea 103:21183–21200

    Article  Google Scholar 

  • Boullier AM, Nicolas A (1975) Classification of textures and fabrics of peridotite xenoliths from South African kimberlites. Phys Chem Earth 9:467–468 IN7, 469–475

    Article  Google Scholar 

  • Brett RC, Russell JK, Moss S (2009) Origin of olivine in kimberlite: phenocryst or impostor? Lithos 112:201–212

    Article  Google Scholar 

  • Brett RC, Russell JK, Andrews GDM, Jones TJ (2015) The ascent of kimberlite: insights from olivine. Earth Planet Sc Lett 424:119–131

    Article  Google Scholar 

  • Crawford B, Porrit L, Nowicki TE, Carlson J (2006) Key geological characteristics of the Koala kimberlite, Ekati Diamond Mine, Canada. In: Kimberlite Emplacement Workshop, 8th International Kimberlite Conference. Saskatoon, Saskatchewan, September 7–14, 2006

    Google Scholar 

  • Creighton S, Stachel T, McLean H, Muehlenbachs K, Simonetti A, Eichenberg D, Luth R (2007) Diamondiferous peridotitic microxenoliths from the Diavik Diamond Mine, NT. Contrib Mineral Petrol 155:541–554

    Article  Google Scholar 

  • Creighton S, Stachel T, Eichenberg D, Luth RW (2010) Oxidation state of the lithospheric mantle beneath Diavik diamond mine, central Slave craton, NWT, Canada. Contrib Mineral Petrol 159:645–657

    Article  Google Scholar 

  • Downes H (1990) Shear zones in the upper mantle—relation between geochemical enrichment and deformation in mantle peridotites. Geology 18:374–377

    Article  Google Scholar 

  • Drury M, Van Roermund HV (1989) Fluid assisted recrystallization in upper mantle peridotite xenoliths from kimberlites. J Petrol 30:133–152

    Article  Google Scholar 

  • Drury MR, Vissers RL, Van der Wal D, Strating EHH (1991) Shear localisation in upper mantle peridotites. Pure Appl Geophys 137:439–460

    Article  Google Scholar 

  • Fipke CE, Gurney J, Moore R (1995) Diamond exploration techniques emphasising indicator mineral geochemistry and Canadian example. Bull Geol Surv Can 423

  • Galloway M, Nowicki T, van Coller B, Mukodzani B, Siemens K, Hetman C, Webb K, Gurney J (2009) Constraining kimberlite geology through integration of geophysical, geological and geochemical methods: a case study of the Mothae kimberlite, northern Lesotho. Lithos 112(S1):130–141

    Article  Google Scholar 

  • Griffin W, Doyle BJ, Ryan CG, Pearson NJ, O’Reilly SY, Davies R, Kivi K, Van Achterbergh E, Natapov LM (1999) Layered mantle lithosphere in the Lac de Gras area, Slave craton: composition, structure and origin. J Petrol 40:705–727

    Article  Google Scholar 

  • Griffin W, O’Reilly SY, Abe N, Aulbach S, Davies RM, Pearson NJ, Doyle BJ, Kivi K (2003) The origin and evolution of Archean lithospheric mantle. Precambrian Res 127:19–41

    Article  Google Scholar 

  • Grütter HS, Gurney JJ, Menzies AH, Winter F (2004) An updated classification scheme for mantle-derived garnet, for use by diamond explorers. Lithos 77:841–857

    Article  Google Scholar 

  • Gurney J, Switzer G (1973) The discovery of garnets closely related to diamonds in the Finsch pipe, South Africa. Contrib Mineral Petrol 39:103–116

    Article  Google Scholar 

  • Harte B (1977) Rock nomenclature with particular relation to deformation and recrystallisation textures in olivine-bearing xenoliths. J Geol 85:279–288

    Article  Google Scholar 

  • Kennedy CS, Kennedy GC (1976) The equilibrium boundary between graphite and diamond. J Geophys Res 81:2467–2470

    Article  Google Scholar 

  • Kopylova MG, Russell JK (2000) Chemical stratification of cratonic lithosphere: constraints from the Northern Slave craton, Canada. Earth Planet Sc Lett 181:71–87

    Article  Google Scholar 

  • Kopylova M, Russell J, Cookenboo H (1999) Petrology of peridotite and pyroxenite xenoliths from the Jericho kimberlite: implications for the thermal state of the mantle beneath the Slave craton, northern Canada. J Petrol 40:79–104

    Article  Google Scholar 

  • Kopylova MG, Beausoleil Y, Goncharov A, Burgess J, Strand P (2016) Spatial distribution of eclogite in the Slave cratonic mantle: the role of subduction. Tectonophysics 672:87–103

    Article  Google Scholar 

  • Mather KA, Pearson DG, McKenzie D, Kjarsgaard BA, Priestley K (2011) Constraints on the depth and thermal history of cratonic lithosphere from peridotite xenoliths, xenocrysts and seismology. Lithos 125:729–742

    Article  Google Scholar 

  • Menzies M, Murthy VR (1980) Enriched mantle: Nd and Sr isotopes in diopsides from kimberlite nodules. Nature 283:634–636

    Article  Google Scholar 

  • Menzies A, Westerlund K, Grütter H, Gurney J, Carlson J, Fung A, Nowicki T (2004) Peridotitic mantle xenoliths from kimberlites on the Ekati Diamond Mine property, N.W.T., Canada: major element compositions and implications for the lithosphere beneath the central Slave craton. Lithos 77:395–412

    Article  Google Scholar 

  • Moss S, Russell J (2011) Fragmentation in kimberlite: products and intensity of explosive eruption. Bull Volcanol 73:983–1003

    Article  Google Scholar 

  • Moss S, Russell JK, Andrews GDM (2008) Progressive infilling of a kimberlite pipe at Diavik, Northwest Territories, Canada: insights from volcanic facies architecture, textures, and granulometry. J Volcanol Geotherm Res 174:103–116

    Article  Google Scholar 

  • Moss S, Russell JK, Brett RC, Andrews GDM (2009) Spatial and temporal evolution of kimberlite magma at A154N, Diavik, Northwest Territories, Canada. Lithos 112(S1):541–552

    Article  Google Scholar 

  • Moss S, Russell JK, Scott Smith BH, Brett RC (2010) Olivine crystal size distributions in kimberlite. Am Mineral 95:527–536

    Article  Google Scholar 

  • Moss S, Porritt L, Pollock K, Fomradas G, Stubley M, Eichenberg D, Cutts J (2018) Geology, mineral chemistry and structure of the kimberlites at Diavik Diamond Mine: indicators of cluster-scale cross-fertilization, mantle provenance and pipe morphology. Soc Eco Geo Spc Pub 20:287–318

    Google Scholar 

  • Nimis P, Taylor WR (2000) Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contrib Mineral Petrol 139:541–554

    Article  Google Scholar 

  • Nowicki T, Crawford B, Dyck D, Carlson J, McElroy R, Oshust P, Helmstaedt H (2004) The geology of kimberlite pipes of the Ekati property, Northwest Territories, Canada. Lithos 76:1–27

    Article  Google Scholar 

  • Padgham W, Fyson W (1992) The slave province: a distinct Archean craton. Can J Earth Sci 29:2072–2086

    Article  Google Scholar 

  • Pearson NJ, Griffin WI, Doyle BJ, O'Reilly SY, Van Achtenburg E, Kivi K (1999) Xenoliths from kimberlite pipes of the Lac de Gras area, Slave Craton, Canada. In: Gurney JJ, Richardson SR (eds) Proceedings of the 7th International Kimberlite Conference, the PH Nixon Volume, vol 2. Red Roof Design, Cape Town, pp 644–658

  • Russell JK, Porritt LA, Lavallee Y, Dingwell DB (2012) Kimberlite ascent by assimilation-fuelled buoyancy. Nature 481:352–356 http://www.nature.com/nature/journal/v481/n7381/abs/nature10740.html#supplementary-information

    Article  Google Scholar 

  • Ryan CG, Griffin WL, Pearson NJ (1996) Garnet geotherms: pressure–temperature data from Cr-pyrope garnet xenocrysts in volcanic rocks. J Geophys Res–Sol Ea 101:5611–5625

    Article  Google Scholar 

  • Sarkar C, Heaman LM, Pearson D (2015) Duration and periodicity of kimberlite volcanic activity in the Lac de Gras kimberlite field, Canada and some recommendations for kimberlite geochronology. Lithos 218:155–166

    Article  Google Scholar 

  • Schmidberger S, Heaman L, Simonetti A, Whiteford S (2005) In-situ Pb and Sr and Lu-Hf isotope systematics of mantle eclogites from the Diavik diamond mine, NWT, Canada. Geochim Cosmochim Ac 69(10S):A287

    Google Scholar 

  • Scott Smith BH, Smith SCS (2009) The economic implications of kimberlite emplacement. Lithos 112:10–22

    Article  Google Scholar 

  • Stubley MP (1998) Bedrock geology of the East Island area, Lac de Gras. Unpublished internal report prepared for Diavik Diamond Mines Inc., 45 pp

  • Tappert R, Stachel T, Harris JW, Shimizu N (2005) Mineral inclusions in diamonds from the Panda kimberlite, Slave Province, Canada. Eur J Mineral 17:423–440

    Article  Google Scholar 

  • Winterburn PA, Harte B, Gurney JJ (1990) Peridotite xenoliths from the Jagersfontein kimberlite pipe: I. Primary and primary-metasomatic mineralogy. Geochim Cosmochim Ac 54:329–341

    Article  Google Scholar 

  • Yuan H, Romanowicz B (2010) Lithospheric layering in the North American craton. Nature 466:1063–1068

    Article  Google Scholar 

  • Ziberna L, Nimis P, Kuzmin D, Malkovets VG (2016) Error sources in single-clinopyroxene thermobarometry and a mantle geotherm for the Novinka kimberlite, Yakutia. Am Mineral 101:2222–2232

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to the organisers of the 11th International Kimberlite Conference for the opportunity to present these findings, to the Diavik Diamond Mine geology team for ongoing collaboration, sample collection, and helpful discussions on interpretations. Some excellent laser work was completed by the Rio Tinto Exploration team in Bundoora, Australia and the Center for Ore Deposits and Earth Sciences (CODES) in Hobart, Australia. Thanks to Mineral Services Canada and the University of Stellenbosch for major element microprobe work and support. Thanks to Herman Grütter, Graham Pearson, Paolo Nimis, Maya Kopylova, Tom Nowicki, Kelly Russell, Curtis Brett, Matthew Field, Pat Hayman, and Lucy Porritt for invaluable comment, critique and discussions. Constructive comments by an anonymous reviewer and guest editor Casey M. Hetman are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen W. Moss.

Additional information

Editorial handling: C. M. Hetman

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moss, S.W., Kobussen, A., Powell, W. et al. Kimberlite emplacement and mantle sampling through time at A154N kimberlite volcano, Diavik Diamond Mine: lessons from the deep. Miner Petrol 112 (Suppl 2), 397–410 (2018). https://doi.org/10.1007/s00710-018-0630-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-018-0630-7

Keywords

Navigation