Skip to main content
Log in

Resolution and uncertainty in lithospheric 3-D geological models

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

As three-dimensional (3-D) modelling of the subcontinental mantle lithosphere is increasingly performed with ever more data and better methods, the robustness of such models is increasingly questioned. Resolution thresholds and uncertainty within deep multidisciplinary 3-D models based on geophysical observations exist at a minimum of three levels. Seismic waves and potential field measurements have inherent limitations in resolution related to their dominant wavelengths. Formal uncertainties can be assigned to grid-search type forward or inverse models of observable parameter sets. Both of these uncertainties are typically minor when compared to resolution limitations related to the density and shape of a specific observation array used in seismological or potential field surveys. Seismic wave source distribution additionally applies in seismology. A fourth, more complex level of uncertainty relates to joint inversions of multiple data sets. Using independent seismic wave phases or combining diverse methods provides another measure of uncertainty of particular physical properties. Extremely sparse xenolith suites provide the only direct correlation of rock type with observed or modelled physical properties at depths greater than a few kilometers. Here we present one case study of the Canadian Mohorovičić (Moho) discontinuity using only two data sets. Refracted and converted seismic waves form the primary determinations of the Moho depth, gravity field modeling provide a secondary constraint on lateral variations, the slope of the Moho, between the sparse seismic estimates. Although statistically marginal, the resulting co-kriged Moho surface correlates better with surface geology and is thus deemed superior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbott DH, Mooney WD, VanTongeren JA (2013) The character of the Moho and lower crust within Archean cratons and the tectonic implications. Tectonophysics 609:690–705

    Article  Google Scholar 

  • Abt DL, Fischer KM, French SW, Ford HA, Yuan H, Romanowicz, B (2010) North American lithospheric discontinuity structure imaged by Ps and Sp receiver functions. J Geophys Res-Sol Ea 115:B09301

  • Afonso JC, Fullea J, Griffin WL, Yang JAG, Connolly JAD, O'Reilly SY (2013a) 3-D multi-observable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle. I: A priori petrological information and geophysical observables. J Geophys Res-Sol Ea 118:2586–2617

    Article  Google Scholar 

  • Afonso JC, Fullea J, Yang Y, Connolly JAD, Jones AG (2013b) 3-D multi-observable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle. II: general methodology and resolution analysis. J Geophys Res-Sol Ea 118:1650–1676

    Article  Google Scholar 

  • Bedle H, van der Lee S (2009) S-velocity variations beneath North America. J Geophys Res-Sol Ea 114. B07308

  • Benson GD, Ritzwoller MH, Barmin MP, Levshin AL, Lin F, Moschetti MP, Shapiro NM, Yang Y (2007) Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophys J Int 169:1239–1260

    Article  Google Scholar 

  • Bevington, PR, Robinson DK (2002) Data reduction and error analysis for the physical sciences (3rd ed.). McGraw-Hill, ISBN 0-07-119926-8

  • Bodin T, Sambridge M (2009) Seismic tomography with the reversible jump algorithm. Geophys J Int 178:1411–1436

    Article  Google Scholar 

  • Bodin T, Sambridge M, Rawlinson N, Arroucau P (2012) Transdimensional tomography with unknown data noise. Geophys J Int 189:1536–1556

    Article  Google Scholar 

  • Bodin T, Yuan H, Romanowicz B (2013) Inversion of receiver functions without deconvolution—application to the Indian craton. Geophys J Int 196:1025–1033

    Article  Google Scholar 

  • Bostock MG (1998) Seismic stratigraphy and evolution of the Slave province. J Geophys Res-Sol Ea 103:21183–21200

    Article  Google Scholar 

  • Brenders AJ, Pratt RG (2007) Full waveform tomography for lithospheric imaging: results from a blind test in a realistic crustal model. Geophys J Inter 168:133–151

  • Brittan J, Warner M (1996) Seismic velocity, heterogeneity, and the composition of the lower crust. Tectonophysics 264:249–259

    Article  Google Scholar 

  • Brown L, Barazangi M, Kaufman S, Oliver J (1986) The first decade of COCORP: 1974–1984. Geodynamics 13:107–120

    Article  Google Scholar 

  • Burdick S, de Hoop MVS, Wang S, van der Hilst RD (2014) Reverse-time migration-based reflection tomography using teleseismic free surface multiples. Geophys J Int 196:996–1017

    Article  Google Scholar 

  • Chen M, Tromp J (2007) Theoretical and numerical investigations of global and regional seismic wave propagation in weakly anisotropic earth models. Geophys J Int 168:1130–1152

    Article  Google Scholar 

  • Chiles JP, Delfiner P (1999) Geostatistics: Modelling spatial uncertainty. Wiley, New York

    Book  Google Scholar 

  • Christensen NI (1996) Poisson's ratio and crustal seismology. J Geophys Res 101(B2):3139–3156

    Article  Google Scholar 

  • Cook FA (2002) Fine structure of the continental reflection Moho. Geol Soc Am Bull 114:64–79

    Article  Google Scholar 

  • Cook FA, Albaugh DS, Brown LD, Kaufman S, Oliver JE, Hatcher RD Jr (1979) Thin-skinned tectonics in the crystalline southern Appalachians; COCORP seismic-reflection profiling of the Blue Ridge and Piedmont. Geology 7:563–567

    Article  Google Scholar 

  • Cook FA, White DJ, Jones AG, Eaton DW, Hall J, Clowes RM (2010) How the crust meets the mantle: Lithoprobe perspectives on the Mohorovičić discontinuity and crust–mantle transition. Can J Earth Sci 47:315–351

    Article  Google Scholar 

  • Crotwell and Owens (2005): http://www.seismosoc.org/publications/SRL/SRL_76/srl_76-6_es.html

  • Eaton DW, Darbyshire F, Evans RL, Grutter H, Jones AG, Yuan X (2009) The elusive lithosphere-asthenosphere boundary (LAB) beneath cratons. Lithos 109:1–22

    Article  Google Scholar 

  • Fernández Viejo G, Clowes RM (2003) Lithospheric structure beneath the Archaean Slave Province and Proterozoic Wopmay orogen, northwestern Canada, from a Lithoprobe refraction/wide-angle reflection survey. Geophys J Int 153:1–19

    Article  Google Scholar 

  • Fichtner A, Kennett BLN, Igel H, Bunge H-P (2009) Full seismic waveform tomography for upper-mantle structure in the Australasian region using adjoint methods. Geophys J Int 179:1703–1725

    Article  Google Scholar 

  • Fichtner A, Saygin E, Taymaz T, Cupillard P, Capdeville Y, Trampert J (2013) The deep structure of the North Anatolian fault zone. Earth Planet Sc Lett 373:109–117

    Article  Google Scholar 

  • Godfrey NJ, Christensen NI, Okaya DA (2000) Anisotropy of schists: contribution of crustal anisotropy to active source seismic experiments and shear wave splitting observations. J Geophys Res 105(B12):27–991

    Article  Google Scholar 

  • Goovaerts P (2000) Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. J Hydrol 228:113–129

    Article  Google Scholar 

  • Hillier MJ, Schetselaar EM, de Kemp EA, Perron G (2014) Three-dimensional modelling of geological surfaces using generalized interpolation with radial basis functions. Math Geosci 46:931–953

    Article  Google Scholar 

  • Holden DH, Archibald NJ, Boschetti F, Jessell MW (2000) Inferring geological structures using wavelet-based multi-scale edge analysis and forward models. Explor Geophys 31:617–621

    Article  Google Scholar 

  • IRIS DMC (2010) Data services products: EARS EarthScope Automated Receiver Survey, https://doi.org/10.17611/DP/EARS.1

    Book  Google Scholar 

  • Jones AG, Ledo J, Ferguson IJ, Craven JA, Unsworth MJ, Chouteau M, Spratt JE (2014) The electrical resistivity of Canada’s lithosphere and correlation with other parameters: contributions from Lithoprobe and other programmes. Can J Earth Sci 51:573–617

    Article  Google Scholar 

  • Kaban MK, Tesauro M, Mooney WD, Cloetingh SA (2014) Density, temperature, and composition of the North American lithosphere—new insights from a joint analysis of seismic, gravity, and mineral physics data: 1. Density structure of the crust and upper mantle. Geochem Geophys Geosyst 15:4781–4807

    Article  Google Scholar 

  • Kamei R, Miyoshi T, Pratt RG, Takanashi M, Masaya S (2015) Application of waveform tomography to a crooked-line 2D land seismic data set. Geophysics 80(5):B115–B129

    Article  Google Scholar 

  • Kustowski B, Ekstrom G, Dziewonski A (2008) Anisotropic shear-wave velocity of the Earth’s mantle: a global model. J Geophys Res-Sol Ea 113:1–23

    Article  Google Scholar 

  • Lebedev S, van der Hilst R (2008) Global upper mantle tomography with the automatic multimode inversion of surface and S-wave forms. Geophys J Int 173:505–518

    Article  Google Scholar 

  • Lebedev S, Adam JM-C, Meier T (2013) Mapping the Moho with seismic surface waves: a review, resolution analysis, and recommended inversion strategies. Tectonophysics 309:377–394

    Article  Google Scholar 

  • Lekic V, Romanowicz B (2011) Inferring upper-mantle structure by full waveform tomography with the spectral element method. Geophys J Int 185:799–831

    Article  Google Scholar 

  • Mather KA, Pearson DG, McKenzie D, Kjarsgaard BA, Priestley K (2011) Constraints on the depth and thermal history of cratonic lithosphere from peridotite xenoliths, xenocrysts and seismology. Lithos 125:729–742

    Article  Google Scholar 

  • Mercier JP, Bostock MG, Audet P, Gaherty JB, Garnero EJ, Revenaugh J (2008) The teleseismic signature of fossil subduction: northwestern Canada. J Geophys Res-Sol Ea 113(B4)

  • Mooney WD, Brocher TM (1987) Coincident seismic reflection/refraction studies of the continental lithosphere: a global review. Rev Geophys 25:723–742

    Article  Google Scholar 

  • Mosegaard K, Singh SC, Snyder DB, Wagner H (1997) Monte Carlo analysis of seismic reflections from the Moho and the W-reflector. J Geophys Res 102:2983–2997

    Article  Google Scholar 

  • Németh B, Clowes RM, Hajnal Z (2005) Lithospheric structure of the trans-Hudson Orogen from seismic refraction–wide-angle reflection studies. Can J Earth Sci 42:435–456

    Article  Google Scholar 

  • Nettleton, LL (1976). Gravity and magnetics in oil prospecting. McGraw-Hill Companies

    Google Scholar 

  • Nolet G (1987) Seismic wave propagation and seismic tomography, in Seismic tomography. Springer Netherlands: 1–23

  • Nolet G (1990) Partitioned waveform inversion and two-dimensional structure under the network of autonomously recording seismographs. J Geophys Res 95:8499–8512

    Article  Google Scholar 

  • O'Driscoll LJ, Humphreys ED, Schmandt B (2011) Time corrections to teleseismic P delays derived from SKS splitting parameters and implications for western US P-wave tomography. Geophys Res Lett 38:19

    Google Scholar 

  • Oldenburg DW (1974) The inversion and interpretation of gravity anomalies. Geophysics 39(4):526–536

    Article  Google Scholar 

  • Olugboji, T.M., Lekic V, McDonough, W. (2017) A statistical assessment of seismic models of the US continental crust using Bayesian inversion of ambient noise surface wave dispersion data. Tectonics

  • O'Reilly SY, Griffin WL (2013) Moho vs crust–mantle boundary: evolution of an idea. Tectonophysics 609:535–546

    Article  Google Scholar 

  • Parker RL (1973) The rapid calculation of potential anomalies. Geophys J Roy Astr S 31:447–455

    Article  Google Scholar 

  • Pawlak A, Eaton DW, Bastow ID, Kendall J-M, Helffrich G, Wookey J, Snyder D (2011) Crustal structure beneath Hudson Bay from ambient-noise tomography: implications for basin formation. Geophys J Int 184:65–82

    Article  Google Scholar 

  • Postlethwaite B, Bostock M, Christensen NI, Snyder DB (2014) Seismic velocities and composition of the Canadian crust. Tectonophysics 633:256–267

    Article  Google Scholar 

  • Pratt RG, Shin C, Hick GJ (1998) Gauss–Newton and full Newton methods in frequency–space seismic waveform inversion. Geophys J Int 133:341–362

    Article  Google Scholar 

  • Priestley K, McKenzie D (2006) The thermal structure of the lithosphere from shear wave velocities. Earth Planet Sc Lett 244:285–301

    Article  Google Scholar 

  • Ritsema J, Duess A, van Heijst H, Woodhouse J (2011) S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting functions. Geophys J Int 184:1223–1236

    Article  Google Scholar 

  • Rudnick RL, Nyblade AA (1999) The thickness and heat production of Archean lithosphere: constraints from xenolith thermobarometry and surface heat flow. Geo Soc S P 6:3–12

    Google Scholar 

  • Scales JA, Snieder R (1997) To Bayes or not to Bayes? Geophysics 62(4):1045–1046

    Article  Google Scholar 

  • Schaeffer AJ, Lebedev S (2013) Global shear speed structure of the upper mantle and transition zone. Geophys J Int 194:417–449

    Article  Google Scholar 

  • Schaeffer A, Lebedev S (2014) Imaging the North American continent using waveform inversion of global and USArray data. Earth Planet Sc Lett 402:26–41

    Article  Google Scholar 

  • Schetselaar E, Shamsipour P (2015) Interpretation of borehole gravity data of the Lalor volcanogenic massive sulfide deposit, Snow Lake, Manitoba, Canada. Interpretation 3(3):T145–T154

    Article  Google Scholar 

  • Schetselaar EM, Snyder DB (2017) National database of Moho depth estimates estimates from seismic refraction and teleseismic surveys. Geol Survey Canada Open File 8243, 14p https://doi.org/10.4095/305396

  • Schetselaar E, Bellefleur G, Craven J, Roots E, Cheraghi S, Shamsipour P, Caté A, Mercier-Langevin P, El Goumi N, Enkin R, Salisbury M (2017) Geologically-driven 3-D stochastic modelling of physical rock properties in support of interpreting the seismic response of the Lalor volcanogenic massive sulphide deposit, Snow Lake, Manitoba, Canada. In: Gessner K, Blenkinsop TG, Sorjonen-Ward P (eds) Characterization of Ore-Forming Systems from Geological, Geochemical and Geophysical Studies. Geol Soc Spec Publ 453:23 pages

  • Schmandt B, Humphreys E (2011) Seismically imaged relict slab from the 55 Ma Siletzia accretion to the northwest United States. Geology 39:175–178

    Article  Google Scholar 

  • Schmandt B, Dueker K, Humphreys E, Hansen S (2012) Hot mantle upwelling across the 660 beneath Yellowstone. Earth Planet Sc Lett 331:224–236

    Article  Google Scholar 

  • Shen W, Ritzwoller MH, Schulte-Pelkum V (2013) A 3-D model of the crust and uppermost mantle beneath the central and western US by joint inversion of receiver functions and surface wave dispersion. J Geophys Res-Sol Ea 118:262–276

    Article  Google Scholar 

  • Sheriff RE, Geldart LP (1995) Exploration seismology. Cambridge University press

  • Sigloch K (2011) Mantle provinces under North America from multifrequency P wave tomography. Geochem Geophys Geosyst 12:1–27

    Article  Google Scholar 

  • Simpson RW, Jachens RC, Blakely R, Saltus RW (1986) A new isostatic residual gravity map of the conterminous United States with a discussion on the significance of isostatic residual anomalies. J Geophys Res-Sol Ea 91(B8):8348–8372

    Article  Google Scholar 

  • Snyder DB, Bruneton M (2007) Seismic anisotropy of the Slave craton, NW Canada, from joint interpretation of SKS and Rayleigh waves. Geophys J Int 169:170–188

    Article  Google Scholar 

  • Snyder DB, Hillier MJ, Kjarsgaard BA, de Kemp EA, Craven JA (2014) Lithospheric architecture of the Slave craton, northwest Canada, as determined from an interdisciplinary 3-D model. Geochem Geophys Geosyst 15:1895–1910

    Article  Google Scholar 

  • Snyder DB, Craven JA, Pilkington M, Hillier MJ (2015) The 3-dimensional construction of the Rae craton, Central Canada. Geochem Geophys Geosyst 16:3555–3574

    Article  Google Scholar 

  • Snyder DB, Humphreys E, Pearson GD (2017) Construction and destruction of some north American cratons. Tectonophysics 694:464–485

    Article  Google Scholar 

  • Tape C, Liu Q, Maggi A, Tromp J (2009) Adjoint tomography of the southern California crust. Science 325:988–992

    Article  Google Scholar 

  • Tesauro M, Kaban MK, Mooney WD, Cloetingh S (2014) NACr14: a 3-D model for the crustal structure of the north American continent. Tectonophysics 631:65–86

    Article  Google Scholar 

  • Wheeler JO, Hoffman PF, Card KD, Davidson A, Stanford BV, Okulitch AV, and Roest WR (1997) Geologic map of Canada, Map D1860A, version 1.0, scale 1: 5,000,000. Nat. Resour. Can., Ottawa, Ont., Canada

  • Wittig N, Pearson DG, Duggen S, Baker JA, Hoernle K (2010) Tracing the metasomatic and magmatic evolution of continental mantle roots with Sr, Nd, Hf and and Pb isotopes: a case study of Middle Atlas (Morocco) peridotite xenoliths. Geochim Cosmochim Ac 74:1417–1435

    Article  Google Scholar 

  • Yang Y, Li A, Ritzwoller MH (2008) Crustal and uppermost mantle structure in southern Africa revealed from ambient noise and teleseismic tomography. Geophys J Int 174:235–248

    Article  Google Scholar 

  • Yuan H, Dueker K (2005) Teleseismic P-wave tomogram of the Yellowstone plume. Geophys Res Lett 32(7)

  • Yuan H, Levin V (2014) Stratified seismic anisotropy and the lithosphere-asthenosphere boundary beneath eastern North America. J Geophys Res-Sol Ea 119:3096–3114

    Article  Google Scholar 

  • Yuan H, Romanowicz B, Fischer KM, Abt D (2011) 3-D shear wave radially and azimuthally anisotropic velocity model of the north American upper mantle. Geophys J Int 184:1237–1260

    Article  Google Scholar 

  • Zelt CA (2011) Traveltime tomography using controlled-source seismic data. In Encyclopedia of solid earth geophysics (pp. 1453–1473). Springer Netherlands

  • Zelt CA, Smith RB (1992) Seismic traveltime inversion for 2-D crustal velocity structure. Geophys J Int 108:16–34

    Article  Google Scholar 

  • Zhu L, Kanamori H (2000) Moho depth variation in Southern California from teleseismic receiver functions. J Geophys Res 105:2,969–2,980

    Article  Google Scholar 

  • Zhu H, Bozdag E, Peter D, Tromp J (2012) Structure of the European upper mantle revealed by adjoint tomography. Nat Geosci 5:493–498

    Article  Google Scholar 

Download references

Acknowledgements

Early versions of this manuscript were improved by comments from Guillaume Caumon, Michael Hillier, Jonathan Perry-Houts, Gene Humphreys, Alan G. Jones, Gautier Laurent, Mark Lindsay and anonymous reviewers. This represents contribution 20150488 to the Open Geoscience Program of Natural Resources Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Snyder.

Additional information

Editorial handling: R. Rudnick

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Snyder, D.B., Schetselaar, E., Pilkington, M. et al. Resolution and uncertainty in lithospheric 3-D geological models. Miner Petrol 112 (Suppl 1), 133–147 (2018). https://doi.org/10.1007/s00710-018-0619-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-018-0619-2

Keywords

Navigation