Skip to main content
Log in

High-silica zeolites in pyroclastic flows from Central Sardinia (Italy): clues on genetic processes and reserves from a mineralogical study

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The island of Sardinia (Italy) presents some of the most interesting zeolite ores in Europe, most of which are associated with old pyroclastic deposits. In particular, the poorly welded ash and pumice pyroclastic flows of the Oligo-Miocene Allai unit were the suspected cause for the widespread zeolitization processes and their subsequent potential economic interest. Fourteen stratigraphic sequences of those Allai flows were sampled and studied, in order to fill the gap existing in the mineralogical database of Sardinian zeolites. A multi-analytical strategy has been used to determine for the first time the nature, the distribution and the textural relationships of the main zeolite types throughout the pyroclastic flows, as well as the geochemical features of the zeolite-bearing rocks. The overall data contribute to depict the main genetic process that involved a hydrothermal environment operative under a dominant closed system, at temperature near to 200 °C and progressively proceeded thanks to cooling and chemical variation of the fluids permeating the matrix. The investigated zeolites mainly consist of Ca-clinoptilolite and/or Na-mordenite, up to 38% in abundance. However, contrarily to the most common clinoptilolite + mordenite paragenesis, mordenite zeolitization is really abundant in the studied ignimbrites in relation to their pristine rhyolitic compositions. The weight percentages and distribution of the industrial minerals throughout the pyroclastic deposits presented by this work can be an important background information for an evaluation of the quality and the reserves of this zeolite mineralization aimed at a possible future exploitation and potential use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahmed MJK, Ahmaruzzaman M (2016) A review on potential usage of industrial waste materials for binding heavy metal ions from aqueous solutions. J Water Process Eng 10:39–47

    Google Scholar 

  • Ahmed NM, Emira HS, Selim MM (2011) Anticorrosive performance of ion-exchange zeolites in alkyd-based paints. Pigm Resin Technol 40:91–99

    Google Scholar 

  • Allen ER, Ming DW (1995) Recent progress in the use of natural zeolites in agronomy and horticulture. Natural. Zeolites 93:477–490

    Google Scholar 

  • Alshameri A, Ibrahim A, Assabri AM, Lei X, Wang H, Yan C (2014) The investigation into the ammonium removal performance of Yemeni natural zeolite: modification, ion exchange mechanism, and thermodynamics. Powder Technol 258:20–31

    Google Scholar 

  • Alvarez W (1972) Rotation of the Corsica–Sardinia microplate. Nature 235(58):103–105

    Google Scholar 

  • Andronikashvili T, Pagava K, Kurashvili T, Eprikashvili L (2009) Possibility of application of natural zeolites for medicinal purposes. Bull Georgian Nat Acad Sc 3:158–167

    Google Scholar 

  • Assorgia A, Balogh K, Lecca L, Ibba A, Porcu A, Secchi F, Tilocca G (1995) Volcanological characters and structural context of Oligo-Miocene volcanism successions from central Sardinia (Italy). Atti Convegno Rapporti Alpi-Appennino, pp 397–424

  • Assorgia A, Barca S, Balogh K, Porcu A, Spano C, Rizzo R (1998) The Oligocene–Miocene sedimentary and volcanic successions of central Sardinia, Italy. Romanian. J Stratigr 78:9–23

    Google Scholar 

  • Aversa G, Balassone G, Boni M (2002) The calamine ores in SW Sardinia (Italy): mineralogy revisited. Period Mineral 71:201–218

    Google Scholar 

  • Barth-Wirsching U, Höller H (1989) Experimental studies on zeolite formation conditions. Eur J Mineral 1:489–506

    Google Scholar 

  • Beccaluva L, Civetta L, Macciotta G, Ricci CA (1985) Geochronology in Sardinia: results and problems. Rendiconti della Società Italiana di Mineralogia e Petrologia 40:57–72

    Google Scholar 

  • Beccaluva L, Brotzu P, Macinotta G, Morbidelli L, Serri G, Traversa G (1987) Cenozoic tectono-magmatic evolution and inferred mantle sources in the Sardo-Tyrrhenian area. In: Boriani A (ed) The lithosphere in Italy: advances in Earth science research. Accademia Nazionale Dei Lincei, Roma, pp 229–248

    Google Scholar 

  • Bish DL, Post JE (1993) Quantitative mineralogical analysis using the Rietveld full-pattern fitting method. Am Mineral 78:932–940

    Google Scholar 

  • Boni M, Alt J, Balassone G, Russo A (1992) Stratabound ores at the mid-Ordovician unconformity in SW Sardinia: depositional environment and isotopic characteristics. In: Sassi FP (ed) IGCP Project n 5, pp 67–70

  • Boni M, Muchez PH, Schneider J (2002) Permo-Mesozoic multiple fluid flow and ore deposits in Sardinia: a comparison with Post-Variscan mineralisation of Western Europe. In: Blundell D, Neubauer F, von Quadt A (eds) The timing and location of major ore deposits in an evolving orogeny. Geological Society, London, Special Publications 206, pp 199–211

  • Brotzu P, Lonis R, Melluso L, Morbidelli L, Traversa G, Franciosi L (1997a) Petrology and evolution of calcalkaline magmas from the Arcuentu volcanic complex (SW Sardinia, Italy). Period Mineral 66:151–184

    Google Scholar 

  • Brotzu P, Callegari E, Morra V, Ruffini R (1997b) The orogenic basalt-andesite suites from the Tertiary volcanic complex of Narcao, SW Sardinia (Italy): petrology, geochemistry and Sr-isotope characteristics. Period Mineral 66:101–150

    Google Scholar 

  • Brotzu P, Ghiara MR, Cincotti F, Lonis R, Fercia ML, Sau A (2006) Distribuzione dei minerali autigeni nei flussi piroclastici dell’Unità di Allai (Sardegna Centro-Meridionale). Dissertation, 85° Congresso SIMP, Fluminimaggiore

  • Cappelletti P, Langella A, Cruciani G (1999) Crystal-chemistry and synchrotron Rietveld refinement of two different clinoptilolites from volcanoclastites of North-Western Sardinia. Eur J Mineral 11:1051–1060

    Google Scholar 

  • Cappelletti P, Cerri G, de’Gennaro M, Langella A, Naitza S, Padalino G, Rizzo R, Palomba M (2001) Natural zeolites mineralization on the Oligocene-Miocene volcano-sedimentary succession of Central Sardinia (Italy). Stud Surf Sci Catal 135:10–18

    Google Scholar 

  • Cappelletti P, Cerri G, Colella A, de'Gennaro M, Langella A, Perrotta A, Scarpati C (2003) Post-eruptive processes in the Campanian Ignimbrite. Miner Petrol 79:79–97

    Google Scholar 

  • Cara S, Carcangiu G, Padalino G, Palomba M, Tamanini M (1996) Studio preliminare del deposito a bentonite–zeoliti dell'area di Monte Ossoni (Castelsardo, Sardegna settentrionale). University of Sardegna, Dissertation Thesis

    Google Scholar 

  • Cara S, Carcangiu G, Padalino G, Palomba M, Tamanini M (2000) The bentonites in pelotherapy: thermal properties of clay pastes from Sardinia (Italy). Appl Clay Sci 16:125–132

    Google Scholar 

  • Cara S, Carcangiu G, Massidda L, Meloni P, Sanna U, Tamanini M (2006) Assessment of pozzolanic potential in lime–water systems of raw and calcined kaolinic clays from the Donnigazza Mine (Sardinia–Italy). Appl Clay Sci 33:66–72

    Google Scholar 

  • Carcangiu G, Fiori M, Grillo SM, Maccioni L, Marcello A, Marchi M, Padalino G, Palomba M, Pretti S, Tamanini M, Uras I (1994) Tertiary volcanic rocks and related mineralizations in Sardinia, Italy. University Department of Geological Engineering of Turkey, Dissertation

    Google Scholar 

  • Carminati E, Lustrino M, Cuffaro M, Doglioni C (2010) Tectonics, magmatism and geodynamics of Italy: what we know and what we imagine. In: Beltrando M, Peccerillo A, Mattei M, Conticelli S, Doglioni C (eds) The geology of Italy: tectonics and life along plate margins. Journal of the virtual explorer. ISSN, pp 1441–8142

    Google Scholar 

  • Cerri G (2000) Caratterizzazione geologica, mineralogica e tecnologica dei tufi zeolitizzati della Sardegna settentrionale. In: Ph.D. University of Sassari, Thesis

    Google Scholar 

  • Cerri G, Mameli P (2004) Secondary mineral assemblages within epiclastites of western Logudoro, Sardinia, Italy. Rocky Mountain (56th Annual) and Cordilleran (100th Annual) Joint Meeting, Geol Soc Am Abstr

  • Cerri G, Cappelletti P, Langella A (2001) Zeolitization of Oligo-Miocene volcaniclastic rocks from Logudoro (Northern Sardinia, Italy). Contrib Mineral Petr 140:404–421

    Google Scholar 

  • Cherchi A, Montadert L (1982a) The Oligo-Miocene rift of Sardinia and early history of the western Mediterranean basin. Nature 298:736–739

    Google Scholar 

  • Cherchi A, Montadert L (1982b) Il sistema di rift Oligomiocenico de1 Mediterraneo occidentale e sue conseguenze paleogeografiche sul terziario sardo. Mem Soc Geol Ital 24:387–400

    Google Scholar 

  • Chipera SJ, Apps JA (2001) Geochemical stability of natural zeolites. In: Bish DL, Ming DW (eds) natural zeolites: occurrence, properties, applications. Rev Mineral Geochem 45:117–161

    Google Scholar 

  • Chojnacki A, Chojnacka K, Hoffmann J, Gorecki H (2004) The application of natural zeolites for mercury removal: from laboratory tests to industrial scale. Min Eng 17:933–937

    Google Scholar 

  • Chung FH (1974a) Quantitative interpretation of X-ray diffraction patterns of mixtures. I. Matrix-flushing method for quantitative multicomponent analysis. Acta Crystallogr 7:519–525

    Google Scholar 

  • Chung FH (1974b) Quantitative interpretation of X-ray diffraction patterns of mixtures. II. Adiabatic principle of X-ray diffraction analysis of mixtures. Acta Crystallogr 7:526–531

    Google Scholar 

  • Clifton RA (1987) Natural and synthetic zeolites. US Bureau of mines information. Circular 9140

  • Cochéme JJ, Lassauvagerie AC, Gonzalez-Sandoval J, Perez-Segura E, Münch P (1996) Characterization and potential economic interest of authigenic zeolites in continental sediments from NW Mexico. Mineral Deposita 31:482–491

    Google Scholar 

  • Conte AM, Palladino DM, Perinelli C, Argenti E (2010) Petrogenesis of the high-alumina basalt-andesite suite from Sant’Antioco Island, SW Sardinia, Italy. Period Mineral 79:27–55

    Google Scholar 

  • Coulon C, Demant A, Bobier C (1974) Contribution du paléomagnétisme à l'étude des séries volcaniques cénozoiques et quaternaires de Sardaigne nord-occidentale. Tectonophysics 22:59–82

    Google Scholar 

  • Coulon C, Dostal J, Dupuy C (1978) Petrology and geochemistry of the ignimbrites and associated lava domes from NW Sardinia. Contrib Mineral Petr 68:89–98

    Google Scholar 

  • Fais S, Ligas P, Palomba M (1999) Integrated application of EM-geophysical and geological methodologies in studying clay ore deposits: the bentonite mineralization of Piscina Collusco (Southern- Central Sardinia-Italy). Proceed of EGU10 4:494

    Google Scholar 

  • Garbarino C, Masi U, Padalino G, Palomba M (1994) Geochemical features of the kaolin deposits from Sardinia (Italy) and genetic implications. Chem Erde Geochem 54:213–233

    Google Scholar 

  • de’ Gennaro M, Oggiano G, Langella A, Di Pisa A (1995) Technological perspectives from volcanoclastic rocks of North Sardinia. Mineral Deposita 31:337–345

    Google Scholar 

  • de’ Gennaro M, Langella A, Padalino G, Palomba M (1998) Zeolite-bearing mineralization at Monte Ossoni (Castelsardo, northem Sardinia) and Allai- Samugheo area (cantral Sardinia) as possibile deposits of industrial minerals. In: Gamba A (ed) Fois E. Proceedings of IV Convegno Nazionale Scienza e Tecnologia delle Zeoliti, Italy, pp 57–59

    Google Scholar 

  • de’ Gennaro M, Cappelletti P, Langella A, Perrotta A, Scarpati C (2000) Genesis of zeolites in the Neapolitan yellow tuff: geological, volcanological and mineralogical evidence. Contrib Mineral Petr 139:17–35

    Google Scholar 

  • de’ Gennaro R, Cappelletti P, Cerri G, de'Gennaro M, Dondi M, Langella A (2004) Zeolitic tuffs as raw materials for lightweight aggregates. Appl Clay Sci 25:71–81

    Google Scholar 

  • Ghiara MR, Petti C (1996) Chemical alteration of volcanic glasses and related control by secondary minerals: experimental studies. Aquat Geochem 1:329–354

    Google Scholar 

  • Ghiara MR, Petti C, Franco E, Luxoro S, Gnazzo L (1995) Diagenetic clinoptilolite from pyroclastic flows of Northern Sardinia. Proc, Dissertation, Italy

    Google Scholar 

  • Ghiara MR, Lonis R, Petti C, Franco E, Luxoro S, Balassone G (1997) The zeolitization process of Tertiary orogenic ignimbrites from Sardinia (Italy): distribution and mining importance. Period Mineral 66:211–229

    Google Scholar 

  • Ghiara MR, Petti C, Franco E, Lonis R (2000) Distribution and genesis of zeolites in Tertiary ignimbrites from Sardinia: evidence of superimposed mineralogenetic processes. In: Colella C, Mumpton FA (eds) Natural zeolites for the third millennium, pp 177–192

    Google Scholar 

  • Gualtieri A, Artioli G (1995) Quantitative determination of chrysotile asbestos in bulk materials by combined Rietveld and RIR methods. Powder Diffract 11:1–10

    Google Scholar 

  • Gualtieri A, Norby P, Hanson J, Hriljac J (1996) Rietveld refinement using synchrotron X-ray powder diffraction data collected in transmission geometry using an imaging-plate detector: application to standard m-ZrO2. J Appl Crystallogr 29:707–713

    Google Scholar 

  • Guarino V, Fedele L, Franciosi L, Lonis R, Lustrino M, Marrazzo M, Melluso L, Morra V, Rocco I, Ronga F (2011) Mineral compositions and magmatic evolution of the calcalkaline rocks of northwestern Sardinia, Italy. Period Mineral 80:517–545

    Google Scholar 

  • Gupta VK, Sadegh H, Yari M, Ghoshekandi RS, Maazinejad B, Chahardori M (2015) Removal of ammonium ions from wastewater: a short review in development of efficient methods. Global. Journal of Environmental Science and Management 1:149

    Google Scholar 

  • Hay RL, Iijima A (1968) Petrology of palagonite tuffs of Koko craters, Oahu, Hawaii. Contrib Mineral Petr 17:141–154

    Google Scholar 

  • Hay RL, Sheppard RA (1977) Zeolites in open hydrologic systems. In: Mumpton a (ed) mineralogy and geology of natural zeolites. Rev Mineral 4:93–102

    Google Scholar 

  • Iijima A (1978) Geological occurrences of zeolite in marine environments. In: Sand LB, Mumpton FA (eds) Natural zeolites: occurrence, properties, use. Pergamon, New York, pp 175–198

    Google Scholar 

  • Iijima A (1980) Geology of natural zeolites and zeolitic rocks. Pure Appl Chem 52:2115–2130

    Google Scholar 

  • Iijima A, Utada M (1966) Zeolites in sedimentary rocks, with reference to the depositional environments and zonal distribution. Sedimentology 7:327–357

    Google Scholar 

  • Kawano M, Tomita K, Shinohara Y (1997) Analytical electron microscopic study of the non-crystalline products formed at early weathering stages of volcanic glass. Clay Clay Miner 45:440–447

    Google Scholar 

  • Keith TE, Staples LW (1985) Zeolites in Eocene basaltic pillow lavas of the Siletz River volcanics, central Coast Range, Oregon. Clay Clay Miner 33:135–144

    Google Scholar 

  • Kristmannsdottir H, Tomasson J (1978) Zeolite zones in geothermal areas in Iceland. In: Sand LB, Mumpton FA (eds) Natural zeolites: occurrence, properties, use, pp 277–284

    Google Scholar 

  • Kusakabe H, Minato H, Utada M, Yamanaka T (1981) Phase relations of clinoptilolite, mordenite, analcime, and albite with increasing pH, sodium ion concentration, and temperature. University of Tokyo Scientific Papers, College of General. Education 31:39–59

    Google Scholar 

  • Langella A, Cappelletti P, Cerri G, Bish DL, dè Gennaro M (1999) Distribution of Industrial Minerals in Sardinia (Italy): Clinoptilolite bearing rocks of the Logudoro Region. In: Misaelides P, Macasek F, Pinnavaia TJ, Colella C (eds) Natural microporous materials in enviornmental technology. Dordrecht, pp 237–252

    Google Scholar 

  • Langella A, Bish DL, Cappelletti P, Cerri G, Colella A, dè Gennaro R, Graziano SF, Perrotta A, Scarpati C, dè Gennaro M (2013) New insights into the mineralogical facies distribution of Campanian Ignimbrite, a relevant Italian industrial materia. Appl Clay Sci 72:55–73

    Google Scholar 

  • Larson AC, Von Dreele RB (1997) GSAS. General structure analysis. Report LAUR, Los Alamos National Laboratory, Los Alamos, New Mexico, 86–748

  • Lecca L, Carboni S, Scarteddu R, Sechi F, Tilocca GI, Pisano S (1987) Schema stratigrafico della piattaforma continentale occidentale e meridionale della Sardegna. Memorie della Societa'geologica Italiana 36:31–40

    Google Scholar 

  • Lecca L, Lonis R, Luxoro S, Melis F, Secchi F, Brotzu P (1997) Oligo-Miocene volcanic sequences and rifting stages in Sardinia: a review. Period Mineral 66:7–61

    Google Scholar 

  • Liou JG (1971) Analcime equilibria. Lithos 4:389–402

    Google Scholar 

  • Lisitzina NA, Butuzova GY (1982) Authigenic zeolites in the sedimentary mantle of the world ocean. Sediment Geol 31:33–41

    Google Scholar 

  • Lonis R, Morra V, Lustrino M, Melluso L, Secchi F (1997) Plagioclase textures, mineralogy and petrology of Tertiary orogenic volcanic rocks from Sardinia (central Sardinia). Period Mineral 66:185–210

    Google Scholar 

  • Lustrino M, Morra V, Fedele L, Franciosi L (2009) The beginning of the Apennine subduction system in central-western Mediterranean: constraints from Cenozoic “orogenic” magmatic activity of Sardinia (Italy). Tectonics 28. https://doi.org/10.1029/2008TC002419

    Google Scholar 

  • Lustrino M, Duggen S, Rosenberg CL (2011) The central-western Mediterranean: anomalous igneous activity in an anomalous collisional tectonic setting. Earth-Sci Rev 104:1–40

    Google Scholar 

  • Maccioni L, Marchi M, Padalino G, Palomba M, Sistu G (1995) Bentonite occurrences in the Tertiary volcanic rocks in central Sardinia, Italy. Explor Min Geol 4:74–79

    Google Scholar 

  • Mahabadi AA, Hajabbasi MA, Khademi H, Kazemian H (2007) Soil cadmium stabilization using an Iranian natural zeolite. Geoderma 137:388–393

    Google Scholar 

  • Mariner RH, Surdam RC (1970) Alkalinity and formation of zeolites in saline, alkaline-lakes. Science 170:977–980

    Google Scholar 

  • Mažeikiene A, Valentukevičiene M, Jankauskas J (2010) Laboratory study of ammonium ion removal by using zeolite (clinoptilolite) to treat drinking water. J Environ Eng Landsc Manage 18:54–61

    Google Scholar 

  • Mondillo N, Boni M, Balassone G, Spoleto S, Stellato F, Marino A, Santoro L, Spratt J (2016) Rare earth elements (REE) - Minerals in the Silius fluorite vein system (Sardinia, Italy). Ore Geol Rev 74:211–224

    Google Scholar 

  • Morbidelli P, Ghiara MR, Lonis R, Sau A (1999) Zeolitic occurences from Tertiary pyroclastic flows and related epiclastic deposits outcropping in northern Sardinia (Italy). Period Mineral 68:287–313

    Google Scholar 

  • Morbidelli P, Ghiara MR, Lonis R, Petti C (2001) Quantitative distribution and chemical composition of authigenic minerals in clinoptilolite-bearing ignimbrites from northern Sardinia(Italy): inferences for minerogenetic models. Period Mineral 70:71–97

    Google Scholar 

  • Nairn AEM, Westphal M (1968) Possible implications of the palaeomagnetic study of late Palaeozoic igneous rocks of northwestern Corsica. Palaeogeogr Palaeocl 5:179–204

    Google Scholar 

  • Naitza S, Padalino G, Palomba M, Rizzo R (2003) Distribution and genesis of zeolite mineralization in Cenozoic pyroclastic flows from Central Sardinia (Italy): guidelines for mineral exploration. In: Eliopoulos DG (ed) Mineral exploration and sustainable development. Rotterdam, pp 915–918

    Google Scholar 

  • Özen S, Göncüoğlu MC, Liguori B, De Gennaro B, Cappelletti P, Gatta GD, Iucolano F, Colella C (2016) A comprehensive evaluation of sedimentary zeolites from Turkey as pozzolanic addition of cement-and lime-based binders. Constr Build Mater 105:46–61

    Google Scholar 

  • Padalino G, Palomba M, Simeone R (2003) Mineralogia e geochimica isotopica delle facies di alterazione nei sistemi epitermali delle aree di Romana e Tresnuraghes (Sardegna NW, Italia). Applicazioni per l’esplorazione mineraria. Boll Soc Geol Ital 122:139–145

    Google Scholar 

  • Palomba M, Padalino G, Marchi M (2003) Industrial Mineral occurrences related to Cenozoic volcanic rocks of Sardinia (Italy). In: Eliopoulos DG (ed) Mineral exploration and sustainable development. Rotterdam, pp 919–922

    Google Scholar 

  • Palomba M, Padalino G, Marchi M (2006) Industrial mineral occurrence associated with Cenozoic volcanic rocks of Sardinia: geological, mineralogical, geochemical features and genetic implications. Ore Geol Rev 29:118–145

    Google Scholar 

  • Passaglia E (1970) The crystal chemistry of chabazites. Am Mineral 55:1278–1301

    Google Scholar 

  • Passaglia E (1975) The crystal chemistry of mordenites. Contrib Mineral Petr 50:65–77

    Google Scholar 

  • Persico C, De Arca A, Spada F (2007) Le industrie estrattive della Sardegna, analisi economica e strutturale. Osservatorio Economico della Sardegna, Sardegna, pp. 1–11

  • Pouchou LJ, Pichoir F (1984) New model quantitative x-ray microanalysis, 1. Application to the analysis of homogeneous samples. La Recherche Aérospatiale 5:349–367

    Google Scholar 

  • Renaut RW (1993) Zeolitic diagenesis of late Quaternary fluviolacustrine sediments and associated calcrete formation in the Lake Bogoria Basin, Kenya Rift Valley. Sedimentology 40:271–301

    Google Scholar 

  • Salem A, Sene RA (2011) Removal of lead from solution by combination of natural zeolite–kaolin–bentonite as a new low-cost adsorbent. Chem Eng J 174:619–628

    Google Scholar 

  • Sharadqah SI, Al-Dwairi RA (2010) Control of odorants emissions from poultry manure using Jordanian natural zeolites. Jordan. J Civ Eng 4:378–388

    Google Scholar 

  • Shent JH, Wang YS, Lin JP, Wu SH, Horng JJ (2014) Improving the indoor air quality of respiratory type of medical facility by zeolite filtering. J Air Waste Ma 64:13–18

    Google Scholar 

  • Sheppard RA, Gude AJ (1968) Distribution and genesis of authigenic silicate minerals in tuffs of Pleistocene Lake Tecopa. Inyo County, California. US Govt Print Off

    Google Scholar 

  • Sheppard RA, Gude AJ (1969) Diagenesis of tuffs in the Barstow Formation, Mud Hills, San Bernardino County. California, US Govt Print Off

    Google Scholar 

  • Sivasankar V, Ramachandramoorthy T (2011) Water softening behavior of sand materials-mimicking natural zeolites in some locations of Rameswaram Island, India. Chem Eng J 171:24–32

    Google Scholar 

  • Stamatakis MG, Hall A, Hein JR (1996) The zeolite deposits of Greece. Mineral Deposita 31:473–481

    Google Scholar 

  • Surdam RC (1977) Zeolites in closed hydrologic systems. In: Mumpton FA (ed) Mineralogy and geology of natural zeolites. Mineralogical Society of America, pp 65–92

    Google Scholar 

  • Tapponier P (1977) Évolution tectonique du système alpin en Méditerranée: poinçonnement et écrasement rigide-plastique. Bulletin de la Société géologique de France 29:437–460

    Google Scholar 

  • Tilocca G, Sistu G (1994) Il M.te Zuighe (Logudoro, Sardegnanord-occidentale): osservazioni geologiche e litogeochimiche. Boll Soc Geo Ital 113:633–644

    Google Scholar 

  • Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallog 34:210–213

    Google Scholar 

  • Utada M (2001) Zeolites in burial diagenesis and low-grade metamorphic rocks. Rev Mineral Geochem 45:277–304

    Google Scholar 

  • Walker GP (1960) Zeolite zones and dike distribution in relation to the structure of the basalts of eastern Iceland. J Geol 68:515–528

    Google Scholar 

  • Westphal M, Orsini J, Vellutini P (1976) Le microcontinent corso-sarde, sa position initiale: données paléomagnétiques et raccords géologiques. Tectonophysics 30:141–157

    Google Scholar 

  • Whateley MKG, Querol X, Fernandez-Turiel JL, Tuncali E (1996) Zeolites in Tertiary coal from the Cayirhan mine, Beypazari, Turkey. Mineral Deposita 31:529–538

    Google Scholar 

  • Wilkin RT, Barnes HL (1998) Solubility and stability of zeolites in aqueous solution: I Analcime, Na-, and K-clinoptilolite. Am Mineral 83:746–761

    Google Scholar 

  • Winchester TA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:325–347

    Google Scholar 

  • Wirsching U (1981) Experiments on the hydrothermal formation of calcium zeolites. Clay Clay Miner 29:171–183

    Google Scholar 

  • Yu CH, Huang CH, Tan CS (2012) A review of CO2 capture by absorption and adsorption. Aerosol Air Qual Res 12:745–769

    Google Scholar 

  • Zhao M, Tang Z, Liu P (2008) Removal of methylene blue from aqueous solution with silica nano-sheets derived from vermiculite. J Hazard Mater 158:43–51

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Piero Brotzu for his suggestions during the preparation of the earlier version of the manuscript. We acknowledge Roberto de Gennaro for skillful assistance in SEM observations and EDS analyses. Special thanks are due to Carmela Petti for useful discussions and suggestions. English has been improved by Peter Starace. The manuscript has also benefited from the suggestions of two anonymous reviewers and of the Editor Lutz Nasdala. This research was granted by the Programma Operativo Nazionale “Ricerca Scientifica, Sviluppo, Alta Formazione” 2000-2006, funded by the Ministry of Education, University and Research (MIUR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Mormone.

Additional information

Editorial handling: J. Elsen

Electronic supplementary material

ESM 1

(XLSX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mormone, A., Ghiara, M.R., Balassone, G. et al. High-silica zeolites in pyroclastic flows from Central Sardinia (Italy): clues on genetic processes and reserves from a mineralogical study. Miner Petrol 112, 767–788 (2018). https://doi.org/10.1007/s00710-018-0583-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-018-0583-x

Keywords

Navigation