Skip to main content
Log in

Compositional variations of zirconolite from the Evate apatite deposit (Mozambique) as an indicator of magmatic-hydrothermal conditions during post-orogenic collapse of Gondwana

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Zirconolite is documented from the Evate apatite-magnetite-carbonate deposit in the circular Monapo Klippe (eastern Mozambique)—a relic of Neoproterozoic nappe thrusted over the Mesoproterozoic basement of the Nampula block. Zirconolite enriched in rare earth elements—REE = Y + Lu+ΣLa–Yb (up to 24.11 wt% REE2O3, 0.596 apfu REE) creates thin rims around spinel and magnetite grains, whereas zirconolite enriched in U and Th (up to 18.88 wt% ThO2 + UO2, 0.293 apfu Th + U) replace the Late Ediacaran (~ 590 Ma) zircon and baddeleyite along contacts with pyrrhotite and magnetite. Both types of zirconolite contain locally increased Nb and Ta concentrations (up to 7.58 wt% Nb2O5 + Ta2O5, 0.202 apfu Nb + Ta). Typical substitutions in zirconolite from Evate involve REE + U,Th → Ca, and M 2++M 5+→Ti + M 3+ (M 2+ = Fe2++Mg, M 3+ = Fe3+, M 5+ = Nb5++Ta5+). In addition, REE-zirconolite is typical of the REE + M 2+ → Ca + M 3+ substitution (M 2+ = Mg, M 3+ = Fe3++Al3+). Hence, Fe3+ predominates over Fe2+ in all types of zirconolite, thus enabling the high REE content in Nb-poor zirconolites to be stored in locally dominant REEZrTiFe3+O7 component known so far only as a synthetic analogue of natural zirconolite. Other types of zirconolite from Evate are dominated by the common CaZrTi2O7 end member, but the aforementioned “synthetic” REEZrTiFe3+O7 accompanied by another ‘synthetic’ (U,Th)ZrFe3 +2O7 component are also abundant. The U,Pb,Th concentrations in U,Th-zirconolites plot discordantly to theoretical isochrons, thus indicating ~ 440 ppm of non-radiogenic excess lead in earlier Nb-rich zirconolite contrasting with secondary Pb loss from later Nb-poor zirconolite. The non-radiogenic Pb-corrected age of the early zirconolite corresponded to 485 ± 9 Ma, within uncertainty limit identical with the 493 ± 10 Ma age of the associated uranothorianite. The variegated chemical composition of zirconolites reflects the complex history of the Evate deposit. Compositional and substitution trends of the REE-zirconolite overlaps that genetically linked with carbonatites, syenites and mafic igneous rocks, whereas the U,Th-zirconolite is reminiscent of hydrothermal-metasomatic deposits. The predominance of trivalent iron in zirconolite most likely reflects strongly oxidizing parental fluids that percolated during episodic Late Ordovician to Late Cambrian rifting of Gondwana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Åmli R, Griffin WL (1975) Standards and correction factors for microprobe analysis of REE minerals. Am Mineral 60:599–606

    Google Scholar 

  • Azzone RG, Ruberti E, Enrich GER, Gomes CB (2009) Zr- and Ba-rich minerals from the Ponte Nova alkaline mafic-ultramafic massif, Southeastern Brazil: indication of an enriched mantle source. Can Mineral 47:1087–1103

    Article  Google Scholar 

  • Bellatreccia F, Della Ventura G, Caprilli E, Williams CT, Parodi GC (1999) Crystal-chemistry of zirconolite and calzirtite from Jacupiranga, São Paulo (Brazil). Mineral Mag 63:649–660

    Article  Google Scholar 

  • Bellatreccia F, Della Ventura G, Williams T, Lumpkin GR, Smith KL, Colella M (2002) Non-metamict zirconolite polytypes from the feldspathoid-bearing alkali-syenitic ejecta of the Vico volcanic complex (Latium, Italy). Eur J Mineral 14:809–820

    Article  Google Scholar 

  • Bingen B, Jacobs J, Viola G, Henderson IHC, Skår Ø, Boyd R, Thomas RJ, Solli A, Key RM, Daudi EXF (2009) Geochronology of the Precambrian crust in the Mozambique belt in NE Mozambique, and implications for Gondwana assembly. Precambrian Res 170:231–255

    Article  Google Scholar 

  • Borodin LS, Nazarenko II, Richter TL (1956) The new mineral zirconolite-complex oxide of the AB3O7 type. Dokl Akad Nauk SSSR 110:845–848 (Russian)

    Google Scholar 

  • Borodin LS, Bykova AB, Kapitonova TA, Pyatenko YuA (1960) New data on zirconolite and niobium variety. Dokl Akad Nauk SSSR 134:1022–1024 (Russian)

    Google Scholar 

  • Brøgger WC (1890) Die Mineralien der Syenitpegmatitgänge der Südnorwegischen Augit- und Nephelinsyenite. Z Krystallogr Mineral 16:387–396

    Google Scholar 

  • Brown GM, Emeleus CH, Holland JG, Peckett A, Phillips R (1972) Mineral-chemical variations in Apollo 14 and Apollo 15 basalts and granitic fractions. proceedings of the third lunar science conference, supplement 3. Geochim Cosmochim Ac 1:141–157

    Google Scholar 

  • Bulakh AG, Nesterov AR, Williams CT, Anisimov IS (1999a) Zirkelite from the Sebl’yavr carbonatite complex, Kola Peninsula, Russia: an X-ray and electron microprobe study of a partially metamict mineral. Mineral Mag 62:837–846

    Article  Google Scholar 

  • Bulakh AG, Nesterov AR, Anastasenko GF, Anisimov IS (1999b) Crystal morphology and intergrowths of calzirtite Ca2Zr5Ti2O16, zirkelite (Ti,Ca,Zr)O2 – x, zirconolite CaZrTi2O7 in phoscorites and carbonatites of the Kola Peninsula (Russia). Neues Jb Miner Monat 1:11–20

    Google Scholar 

  • Busche FD, Prinz M, Keil K, Kurat G (1972) Lunar zirkelite - a uranium-bearing phase. Earth Planet Sci Lett 14:313–321

    Article  Google Scholar 

  • Carlier G, Lorand J-P (2003) Petrogenesis of zirconolite-bearing Mediterranean-type lamproite from the Peruvian Altiplano (Andean Cordillera). Lithos 69:15–35

    Article  Google Scholar 

  • Carlier G, Lorand J-P (2008) Zr-rich accessory minerals (titanite, perrierite, zirconolite, baddeleyite) record strong oxidation associated with magma mixing in the south Peruvian potassic province. Lithos 104:54–70

    Article  Google Scholar 

  • Chukanov NV, Krivovichev SV, Pakhomova AS, Pekov IV, Schäfer Ch, Vigasina MF, Van KV (2014) Laachite, (Ca,Mn)2Zr2Nb2TiFeO14, a new zirconolite-related mineral from the Eifel volcanic region, Germany. Eur J Mineral 26:103–111

    Article  Google Scholar 

  • Cílek V (1989) Industrial minerals of Mozambique. Czech Geological Office, Prague, ISBN 80-7075-027-8

  • Coelho AA, Cheary RW, Smith KL (1997) Analysis and structural determination of Nd-substituted zirconolite-4M. J Solid State Chem 129:346–359

    Article  Google Scholar 

  • Čopjaková R, Houzar S (2009) Zirconolite in marmor near Krahulov and age of HT/LP metamorphism of Moldanubicum in contact aureole of the Třebíč pluton. Acta Mus Morav Sci Geol 94:67–76 (Czech)

    Google Scholar 

  • Čopjaková R, Vrána S, Houzar S, Červený A, Malec J (2008) Zirconolite, baddeleyite and geikielite in clinohumite-spinel-forsterite marbles from the surroundings of Horažďovice and Prachatice, Southwestern Bohemia. Acta Mus Morav Sci Geol 93:37–51 (Czech)

    Google Scholar 

  • Daszinnies MC, Jacobs J, Wartho J-A, Grantham GH (2009) Post pan-African thermotectonic evolution of the north Mozambican basement and its implication for the Gondwana rifting. Inferences from 40Ar/39Ar hornblende, biotite and titanite fission-track dating. In: Lisker F, Ventura B, Glasmacher UA (eds), Thermochronological methods: from palaeotemperature constraints to landscape evolution models. Geol Soc London Spec Pub 324:261–286

  • De Hoog JCM, van Bergen MJ (2000) Volatile-induced transport of HFSE, REE, Th and U in arc magmas: evidence from zirconolite-bearing vesicles in potassic lavas of Lewotolo volcano (Indonesia). Contrib Mineral Petr 139:485–502

    Article  Google Scholar 

  • Della Ventura G, Bellatreccia F, Williams CT (2000) Zirconolite with significant REEZrNb(Mn,Fe)O7 from a xenolith of the Laacher See eruptive center, Eifel volcanic region, Germany. Can Mineral 38:57–65

    Article  Google Scholar 

  • Downes PJ, Dunkley DJ, Fletcher IR, McNaughton NJ, Rasmussen B, Jaques AL, Verrall M, Sweetapple MT (2016) Zirconolite, zircon and monazite-(Ce) U-Th-Pb age constraints on the emplacement, deformation and alteration history of the Cummins Range Carbonatite Complex, Halls Creek Orogen, Kimberley region, Western Australia. Miner Petrol 110:199–222

    Article  Google Scholar 

  • Fowler M, Williams CT (1986) Zirconolite from the Glen Dessary syenite: a comparison with other Scottish zirconolites. Mineral Mag 50:326–328

    Article  Google Scholar 

  • Gieré R (1986) Zirconolite, allanite and hoegbomite in a marble skarn from the Bergell contact aureole: implications for mobility of Ti, Zr and REE. Contrib Mineral Petr 93:459–470

    Article  Google Scholar 

  • Gieré R (1990) Hydrothermal mobility of Ti, Zr and REE: examples from the Bergell and Adamello contact aureoles (Italy). Terra Nova 2:60–67

    Article  Google Scholar 

  • Gieré R, Williams CT (1992) REE-bearing minerals in a Ti-rich vein from the Adamello contact aureole (Italy). Contrib Mineral Petr 112:83–100

  • Gieré R, Williams CT, Lumpkin GR (1998) Chemical characteristics of natural zirconolite. Schweiz Miner Petrog 78:433–459

    Google Scholar 

  • Grantham GH, Macey PH, Ingram BA, Roberts MP, Armstrong RA, Hokada T, Shiraishi K, Jackson C, Bisnath A, Manhiça V (2008) Terrane correlation between Antarctica, Mozambique and Sri Lanka: comparison of geochronology, lithology, structure and metamorphism and possible implications for the geology of southern Africa and Antarctica. In: Satish-Kumar M, Motoyoshi Y, Osanai Y, Hiroi Y, Siraishi K (eds) Geodynamic evolution of East Antarctica: a key to the East-West Gondwana connection. Geol Soc London Spec Pub 308:91–119

  • Grantham DH, Macey PH, Horie K, Kawakami T, Ishikawa M, Satish-Kumar M, Tsuchiya N, Graser P, Azevedo S (2013) Comparison of the metamorphic history of the Monapo Complex, northern Mozambique and Balchenfjella and Austhameren areas, Sør Rondane, Antarctica: Implications for the Kuunga Orogeny and the amalgamation of N. and S. Gondwana. Precambrian Res 234:85–135

    Article  Google Scholar 

  • Harley SL (1994) Mg-Al yttrian zirconolite in a partially melted sapphirine granulite, Vestvold Hills, East Antarctica. Mineral Mag 58:259–269

    Article  Google Scholar 

  • Holland HD, Gottfried D (1955) The effect of nuclear radiation on the structure of zircon. Acta Crystallogr 8:291–300

    Article  Google Scholar 

  • Hornig I, Wörner G (1991) Zirconolite-bearing ultra-potassic veins in a mantle-xenolith from Mt. Melbourne Volcanic Field, Victoria Land, Antarctica. Contrib Mineral Petr 106:355–366

    Article  Google Scholar 

  • Houzar S, Gadas P, Čopjaková R (2010) Mineral assemblage of geikielite-baddeleyite in dolomitic marbles of Moravian Moldanubicum in contact aureole of the Třebíč pluton. Acta Mus Morav Sci Geol 95:71–82 (Czech)

    Google Scholar 

  • Hurai V, Paquette J-L, Huraiová M, Slobodník M, Hvožďara P, Siegfried PR, Gajdošová M, Milovská S (2017) New insights into the origin of the Evate apatite-iron oxide-carbonate deposit, Northeastern Mozambique, constrained by mineralogy, textures, thermochronometry, and fluid inclusions. Ore Geol Rev 80:1072–1091

    Article  Google Scholar 

  • Jafar M, Sengupta P, Achary SN, Tyagi AK (2014) Phase evolution and microstructural studies in CaZrTi2O7 (zirconolite)–Sm2Ti2O7 (pyrochlore) system. J Eur Ceram Soc 34:4373–4381

    Article  Google Scholar 

  • Karlsson JP (2006) An investigation of the felsic Ramiane Pluton, in the Monapo Structure, Northern Moçambique. Examensarbeten I Geologi vid Lunds universitet, Berggrundsgeologi 202

  • Keller J, Brey G, Lorenz V, Sachs P (1990) IAVCEI 1990 pre-conference excursion 2A: volcanism and petrology of the Upper Rhinegraben (Urach-Hegau-Kaiserstuhl). IAVCEI Int Volcanol Congress, Mainz 1990 field guide 22

  • Kogarko LN, Sorokhtina NV, Zaitsev VA, Senin VG (2009) Rare metal mineralization of calcite carbonatites from the Cape Verde Archipelago. Geochem Int 47:531–549

    Article  Google Scholar 

  • Konečný P, Siman P, Holický I, Janák M, Kollárová V (2004) Method of monazite dating using an electron microprobe. Miner Slov 36:225–235 (Slovak)

    Google Scholar 

  • Kukharenko AA, Orlova MP, Bulakh AG, Bagdasarov EA, Rimskaya-Kosakova OM, Nefedov EI, Ilinskii GA, Sergeev AS, Abakumova NB (1965) Caledonian complex of alkaline ultrabasic rocks and carbonatites of the Kola Peninsula and North Karelia. Nedra Publishers, Moscow (Russian)

  • Larsen AO (1996) Rare earth minerals from the syenite pegmatites in the Oslo region, Norway. In: Jones AP, Wall F, Williams CT (eds) Rare earth minerals: chemistry, origin and ore deposits. Chapman and Hall, London, pp 151–166

    Google Scholar 

  • Lorand JP, Cottin JY (1987) A new natural occurrence of zirconolite (CaZrTi2O7) and baddeleyite (ZrO2) in basic cumulates: the Laouni layered intrusion (Southern Hoggar, Algeria). Mineral Mag 51:671–676

    Article  Google Scholar 

  • Lumpkin GR, Smith KL, Blackford MG, Gieré R, Williams CT (1998) The crystalline-amorphous transformation in natural zirconolite: evidence for long-term annealing. Mat Res Soc Symp Proc 506:215–222

    Article  Google Scholar 

  • Macey PH, Thomas RJ, Grantham GH, Ingram BA, Jacobs J, Armstrong RA, Roberts MP, Bingen B, Hollick L, de Kock GS, Viola G, Bauer W, Gonzales E, Bjerkgård T, Henderson IHC, Sandstad JS, Cronwright MS, Harley S, Solli A, Nordgulen Ø, Motuza G, Daudi E, Manhiça V (2010) Mesoproterozoic geology of the Nampula Block, northern Mozambique: Tracing fragments of Mesoproterozoic crust in the heart of Gondwana. Precambrian Res 182:124–148

    Article  Google Scholar 

  • Macey PH, Miller JA, Rowe CD, Grantham GH, Siegfried P, Armstrong RA, Kemp J, Bacalau J (2013) Geology of the Monapo Klippe, NE Mozambique and its significance for assembly of central Gondwana. Precambrian Res 233:259–281

    Article  Google Scholar 

  • Mariano AN, Roeder PL (1989) Wöhlerite: chemical composition, cathodoluminiscence and environment of crystallization. Can Mineral 27:709–720

    Google Scholar 

  • Mazzi F, Munno R (1983) Calciobetafite (new mineral from the pyrochlore group) and related minerals from Campi Flegrei, Italy: crystal structures of polymignite and zirkelite: comparison with pyrochlore and zirconolite. Am Mineral 68:262–276

    Google Scholar 

  • Melusso L, Guarino V, Lustrino M, Morra V, de Gennaro R (2017) The REE- and HFSE-bearing phases in the Itatiaia alkaline complex (Brazil) and geochemical evolution of feldspar-rich felsic melts. Mineral Mag 81:217–250

    Article  Google Scholar 

  • Merlet C (1992) Accurate description of surface ionization in electron probe microanalysis: an improved formulation. X-Ray Spectrom 21:229–238

    Article  Google Scholar 

  • Montel JM, Foret S, Veschambre M, Nicollet C, Provost A (1996) Electron microprobe dating of monazite. Chem Geol 131:37–53

    Article  Google Scholar 

  • Novák M, Gadas P (2010) Internal structure and mineralogy of a zoned anorthite- and grossular-bearing leucotonalitic pegmatite in serpentinized lherzolite at Ruda nad Moravou, Staré Město unit, Czech Republic. Can Mineral 48:629–650

    Article  Google Scholar 

  • Pascal M-L, Di Muro A, Fonteilles M, Principe C (2009) Zirconolite and calzirtite in banded forsterite-spinel-calcite skarn ejecta from the 1631 eruption of Vesuvius: inferences for magma-wallrock interactions. Mineral Mag 73:333–356

    Article  Google Scholar 

  • Pinna P, Jourde G, Calvez JY, Mroz JP, Marques JM (1993) The Mozambique Belt in northern Mozambique: Neoproterozoic (1100 – 850 Ma) crustal growth and tectogenesis, and superimposed Pan-African (800 – 550 Ma) tectonism. Precambrian Res 62:1–59

    Article  Google Scholar 

  • Platt G, Wall F, Williams CT, Woolley AR (1987) Zirconolite, chevkinite and other rare earth minerals from nepheline syenites and peralkaline granites and syenites of the Chilwa Alkaline Province, Malawi. Mineral Mag 51:253–263

    Article  Google Scholar 

  • Proyer A, Baziotis I, Mposkos E, Rhede D (2014) Ti- and Zr-minerals in calcite-dolomite marbles from the ultrahigh-pressure Kimi Complex, Rhodope Mountains, Greece: implications for the P-T evolution based on reaction textures, petrogenetic grids and geothermobarometry. Am Mineral 99:1429–1448

    Article  Google Scholar 

  • Purtscheller F, Tessadri R (1985) Zirconolite and baddeleyite from metacarbonates of the Oetztal-Stubai complex (Northern Tyrol, Austria). Mineral Mag 49:523–529

    Article  Google Scholar 

  • Pyle JM, Spear FS, Wark DA (2002) Electron microprobe analysis of REE in apatite, monazite and xenotime: protocols and pitfalls. In: Kohn ML, Rakovan J, Hughes JM (eds) Phosphates. Geochemical, geobiological and materials importance. Rev Mineral Geochem, vol 48. Mineral Soc Am, Chantilly, pp 337–362

  • Raber E, Haggerty SE (1979) Zircon-oxide reactions in diamond bearing kimberlites. In: Boyd FR, Boctor HR (eds) Kimberlites, diatremes and diamonds: their geology, petrology, and geochemistry. Proc Sec Int Kimberlite Conf 1:229–240

    Google Scholar 

  • Rajesh VJ, Yokoyama K, Santosh M, Arai S, Oh CW, Kim SW (2006) Zirconolite and baddeleyite in an ultramafic suite from Southern India: Early Ordovician carbonatite-type melts associated with extensional collapse of the Gondwana crust. J Geol 114:171–188

    Article  Google Scholar 

  • Rasmussen B, Fletcher I (2004) Zirconolite: a new U-Pb chronometer for igneous rocks. Geology 32:785–788

    Article  Google Scholar 

  • Rasmussen B, Fletcher IR, Muhling JR (2008) Pb/Pb geochronology, petrography and chemistry of Zr-rich accessory minerals (zirconolite, tranquillityite and baddeleyite) in mare basalt 10047. Geochim Cosmochim Ac 72:5799–5818

    Article  Google Scholar 

  • Roeder E, Weiblen PW (1973) Petrology of some lithic fragments from Luna 20. Geochim Cosmochim Ac 37:1031–1052

    Article  Google Scholar 

  • Santos JJA, Pimenta ACS, Rosa MLS, Conceição H (2015) First occurrence of zirconolite in the South Bahia Alkaline Province: syenite intrusion of Floresta Azul Alkali Complex, Bahia, NE Brazil. Sci Plena 11:095301

    Google Scholar 

  • Sheng YJ, Hutcheon ID, Wassergur GJ (1991) Origin of plagioclase–olivine inclusions in carbonaceous chondrites. Geochim Cosmochim Ac 55:581–599

    Article  Google Scholar 

  • Siegfried PR (1999) The Monapo structure and intrusive complex – an example of large scale alkaline metasomatism in northern Mozambique. In: Stanley CJ, Rankin AH, Bodnar RJ, Naden J, Yardley BWD, Criddle AJ, Hagni RD, Gize AP, Pasava J, Fleet AJ, Seltmann R, Halls C, Stemprok M, Williamson B, Herrington RJ, Hill RET, Prichard HM, Wall F, Williams CT, McDonald I, Wilkinson JJ, Cooke D, Cook NJ, Marshall BJ, Spry P, Zaw K, Meinert L, Sundblad K, Scott P, Clark SHB, Valsami-Jones E, Beukes NJ, Stein HJ, Hannah JL, Neubauer F, Blundell DJ, Alderton DHM, Smith MP, Mulshaw S, Ixer RA (eds) Mineral deposits: processes to processing. Balkema, Rotterdam, pp 683–686

    Google Scholar 

  • Silva LC (1979) Consideracoes geológicas e estudos preliminaries sobre inclusoes primárias, fluidas e sólidas em apatites de rochas carbonatíticas e ijolitas da ihla de Santiago (República de Cabo Verde). Comun Serv Geol Portugal 64:261–268

    Google Scholar 

  • Smith KL, Lumpkin GR (1993) Structural features of zirconolite, hollandite and perovskite, the major waste-bearing phases in Synroc. In: Boland JN, Fitz Gerald JD (eds) Defects and processes in the solid state: Geoscience applications, McLaren vol. Elsevier, Amsterdam, pp 401–422

    Google Scholar 

  • Sonnenthal EL (1992) Geochemistry of dendritic anorthosites and associated pegmatites in Skaergaard Intrusion, East Greenland: evidence for metasomatism by a chlorine-rich fluid. J Volcanol Geoth Res 52:209–230

    Article  Google Scholar 

  • Stucki A, Trommsdorff V, Gunther D (2001) Zirconolite in metarodingites of Penninic Mesozoic ophiolites, Central Alps. Schweiz Miner Petrog 81:257–265

    Google Scholar 

  • Traversa G, Gomes BC, Brotzu P, Buraglini N, Morbidelli L, Principato SM, Ronca S, Ruberti E (2000) Petrography and mineral chemistry of carbonatites and mica-rich rocks from the Araxá complex (Alto Paranaíba Province, Brazil). An Acad Bras Cienc 73:71–98

    Article  Google Scholar 

  • Tropper P, Harlov D, Krenn E, Finger F, Rhede D, Bernhard F (2007) Zr-bearing minerals as indicators for the polymetamorphic evolution of the eastern, lower Austroalpine nappes (Stubenberg Granite contact aureole, Styria, Eastern Alps, Austria). Lithos 95:72–86

    Article  Google Scholar 

  • Ueda K, Jacobs J, Thomas RJ, Kosler J, Jourdan F, Matola R (2012) Delamination-induced late-tectonic deformation and high-grade metamorphism of the Proterozoic Nampula Complex, Northern Mozambique. Precambrian Res 196–197:275–294

    Article  Google Scholar 

  • Vance ER, Lumpkin GR, Carter ML, Cassidy DJ, Ball CJ, Day RA, Begg BD (2002) Incorporation of uranium in zirconolite (CaZrTi2O7. J Am Ceram Soc 85:1853–1859

    Article  Google Scholar 

  • Vartiainen H (1980) The petrography, mineralogy and petrochemistry of the Sokli carbonatite massif, Northern Finland. B Geol Surv Fin 313:1–126

    Google Scholar 

  • Verwoerd WJ (1986) Mineral deposits associated with carbonatites and alkaline rocks. In: Anhaeusser CR, Maske S (eds) Mineral deposits of southern Africa. Geol Soc S Africa, Johannesburg, pp 2173–2191

  • Viola G, Henderson IHC, Bingen B, Thomas RJ, Smethurst MA, de Azavedo S(2008)Growth and collapse of a deeply eroded orogen: insights from structural and geochronological constraints on the Pan-African evolution of NE Mozambique.Tectonics27:TC50009

    Article  Google Scholar 

  • Wark DA, Reid AF, Lovering JF, El Goresy A (1973) Zirconolite (versus zirkelite) in lunar rocks. Lunar Sci IV Conf, Lunar Sci Inst Houston, Texas, pp 764–766

  • Wieser ME, Holden N, Coplen TB, Böhlke JK, Berglund M, Brand WA, De Biévre P, Gröning M, Loss RD, Meija J, Hirata T, Prohaska T, Schoenberg R, O´Connor G, Walczyk T, Yoneda S, Zhu X-K (2013) Atomic weights of elements 2011 (IUPAC Technical Report). Pure Appl Chem 85:1047–1078

    Article  Google Scholar 

  • Williams CT (1996) The occurrence of niobian zirconolite, pyrochlore and baddeleyite in the Kovdor carbonatite complex, Kola Peninsula, Russia. Mineral Mag 60:639–646

    Article  Google Scholar 

  • Williams CT, Gieré R (1988) Metasomatic zonation of REE in zirconolite from a marble skarn at the Bergell contact aureole (Switzerland/Italy). Schweiz Miner Petrog 68:133–140

    Google Scholar 

  • Williams CT, Gieré R (1996) Zirconolite: a review of localities worldwide, and a compilation of its chemical composition. B Nat Hist Mus London 52:1–24

    Google Scholar 

  • Williams CT, Platt RG (1993) Zirconolite-(Nd) and associated minerals from the Schryburt Lake carbonatite, Canada. Min Soc Spring Meet 1993, Extended Abstracts, 157–158

  • Zaccarini F, Stumpfl EF, Garuti G (2004) Zirconolite and Zr-Th-U minerals in chromites of the Finero complex, Western Alps, Italy: evidence for carbonatite-type metasomatism in a subcontinental mantle plume. Can Mineral 42:1825–1845

    Article  Google Scholar 

  • Zaitsev AN, Williams CT, Jeffries TE, Strekopytov S, Moutte J, Ivashchenkova OV, Spratt J, Petrov SV, Wall F, Seltmann R (2015) Rare earth elements in phoscorites and carbonatites of the Devonian Kola Alkaline Province, Russia: examples from Kovdor, Khibina, Vuoriyarvi and Turiy Mys complexes. Ore Geol Rev 64:477–498

    Article  Google Scholar 

  • Zakrzewski MA, Lustenhouwer WJ, Nugteren HJ (1992) Rare-earth minerals yttrian zirconolite and allanite-(Ce)* and associated minerals from Koberg mine, Bergslagen, Sweden. Mineral Mag 56:27–35

    Article  Google Scholar 

  • Zhang A, Hsu W, Li Q, Liu Y, Jiang Y, Tang G (2010) SIMS Pb/Pb dating of Zr-rich minerals in lunar meteorites Miller Range 05035 and LaPaz Icefield 02224: Implications for the petrogenesis of mare basalts. Sci China D 53:327–334

    Article  Google Scholar 

Download references

Acknowledgements

The manuscript benefited from critical comments of P. Downes and an anonymous reviewer. Editorial handling by journal editor A. Möller is also gratefully acknowledged. The work was financially supported from the VEGA grant No. 2/0118/16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vratislav Hurai.

Additional information

Editorial handling: A. Möller

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hurai, V., Huraiová, M., Gajdošová, M. et al. Compositional variations of zirconolite from the Evate apatite deposit (Mozambique) as an indicator of magmatic-hydrothermal conditions during post-orogenic collapse of Gondwana. Miner Petrol 112, 279–296 (2018). https://doi.org/10.1007/s00710-017-0538-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-017-0538-7

Keywords

Navigation