Skip to main content
Log in

Transcriptome analysis of Citrus sinensis reveals potential responsive events triggered by Candidatus Liberibacter asiaticus

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Citrus Huanglongbing (HLB), caused by Candidatus Liberibacter asiaticus (CLas), is a devastating immune-mediated disorder that has a detrimental effect on the citrus industry, with the distinguishing feature being an eruption of reactive oxygen species (ROS). This study explored the alterations in antioxidant enzyme activity, transcriptome, and RNA editing events of organelles in C. sinensis during CLas infection. Results indicated that there were fluctuations in the performance of antioxidant enzymes, such as ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), peroxidase (POD), and superoxide dismutase (SOD), in plants affected by HLB. Transcriptome analysis revealed 3604 genes with altered expression patterns between CLas-infected and healthy samples, including those associated with photosynthesis, biotic interactions, and phytohormones. Samples infected with CLas showed a decrease in the expression of most genes associated with photosynthesis and gibberellin metabolism. It was discovered that RNA editing frequency and the expression level of various genes in the chloroplast and mitochondrion genomes were affected by CLas infection. Our findings provide insights into the inhibition of photosynthesis, gibberellin metabolism, and antioxidant enzymes during CLas infection in C. sinensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The raw reads for this project have been submitted to the Sequence Read Archive with the accession numbers SRR24101860, SRR24101859, SRR24101858, SRR24101857, SRR24101856, and SRR24101855.

References

  • Adamowski M, Friml J (2015) PIN-dependent auxin transport: action, regulation, and evolution. Plant Cell 27(1):20–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alquézar B, Carmona L, Bennici S, Miranda MP, Bassanezi RB, Peña L (2022) Cultural management of huanglongbing: current status and ongoing research. Phytopathology 112(1):11–25

    Article  PubMed  Google Scholar 

  • Arce-Leal ÁP, Bautista R, Rodríguez-Negrete EA, Manzanilla-Ramírez MÁ, Velázquez-Monreal JJ, Santos-Cervantes ME, Méndez-Lozano J, Beuzón CR, Bejarano ER, Castillo AG (2020) Gene expression profile of Mexican lime (Citrus aurantifolia) trees in response to Huanglongbing disease caused by Candidatus Liberibacter asiaticus. Microorganisms 8(4):528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balan B, Ibáñez AM, Dandekar AM, Caruso T, Martinelli F (2018) Identifying host molecular features strongly linked with responses to huanglongbing disease in citrus leaves. Front Plant Sci 9:277

    Article  PubMed  PubMed Central  Google Scholar 

  • Bari R, Jones JDG (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488

    Article  CAS  PubMed  Google Scholar 

  • Bausher MG, Singh ND, Lee S-B, Jansen RK, Daniell H (2006) The complete chloroplast genome sequence of Citrus sinensis (L.) Osbeck var ‘Ridge Pineapple’: organization and phylogenetic relationships to other angiosperms. BMC Plant Biol 6:1–11

    Article  Google Scholar 

  • Biswas MK, Bagchi M, Deng X, Chai L (2020) Genetic Resources of Citrus and Related Genera. In: Gentile A, La Malfa S, Deng Z (eds) The Citrus Genome. Springer International Publishing, Cham, pp 23–31

    Chapter  Google Scholar 

  • Bolwell GP, Daudi A (2009) Reactive oxygen species in plant–pathogen interactions. In: Rio LA, Puppo A (eds) Reactive Oxygen Species in Plant Signaling. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 113–133

    Chapter  Google Scholar 

  • Checker VG, Kushwaha HR, Kumari P, Yadav S (2018) Role of Phytohormones in Plant Defense: Signaling and Cross Talk. In: Singh A, Singh IK (eds) Molecular Aspects of Plant-Pathogen Interaction. Springer Singapore, Singapore, pp 159–184

    Chapter  Google Scholar 

  • Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R (2020) TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13(8):1194–1202

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Min A, Luo S, He J, Wu R, Lin X, Wang Y, He W, Zhang Y, Lin Y, Li M, Zhang Y, Luo Y, Tang H, Wang X (2022) Metabolomic analysis revealed distinct physiological responses of leaves and roots to huanglongbing in a citrus rootstock. Int J Mol Sci 23(16):9242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark K, Franco JY, Schwizer S, Pang Z, Hawara E, Liebrand TWH, Pagliaccia D, Zeng L, Gurung FB, Wang P (2018) An effector from the Huanglongbing-associated pathogen targets citrus proteases. Nat Commun 9(1):1718

    Article  PubMed  PubMed Central  Google Scholar 

  • Collum TD, Culver JN (2016) The impact of phytohormones on virus infection and disease. Curr Opin Virol 17:25–31

    Article  CAS  PubMed  Google Scholar 

  • Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, Szcześniak MW, Gaffney DJ, Elo LL, Zhang X, Mortazavi A (2016) A survey of best practices for RNA-seq data analysis. Genome Biol 17:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Etxeberria E, Gonzalez P, Achor D, Albrigo G (2009) Anatomical distribution of abnormally high levels of starch in HLB-affected Valencia orange trees. Physiol Mol Plant Pathol 74(1):76–83

    Article  CAS  Google Scholar 

  • Ferrarezi RS, Vincent CI, Urbaneja A, Machado MA (2020) Editorial: Unravelling Citrus Huanglongbing Disease. Frontiers in Plant Science 11, Editorial

  • Han Y, Guo S, Muegge K, Zhang W, Zhou B (2015) Advanced applications of RNA sequencing and challenges. Bioinform Biol Insights 9:29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hao W, Liu G, Wang W, Shen W, Zhao Y, Sun J, Yang Q, Zhang Y, Fan W, Pei S, Chen Z, Xu D, Qin T (2021) RNA editing and its roles in plant organelles. Front Genet 12:757109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou S, Tsuda K (2022) Salicylic acid and jasmonic acid crosstalk in plant immunity. Essays Biochem 66(5):647–656

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Zhong X, Liu X, Lou B, Zhou C, Wang X (2017) Comparative transcriptome analysis unveils the tolerance mechanisms of Citrus hystrix in response to ‘Candidatus Liberibacter asiaticus’ infection. PLoS ONE 12(12):e0189229

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu B, Rao MJ, Deng X, Pandey SS, Hendrich C, Ding F, Wang N, Xu Q (2021) Molecular signatures between citrus and Candidatus Liberibacter asiaticus. PLoS Pathog 17(12):e1010071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen PE, Leister D (2014) Chloroplast evolution, structure and functions. F1000prime reports 6:40

  • Jiang J, Dehesh K (2021) Plastidial retrograde modulation of light and hormonal signaling: an odyssey. New Phytol 230(3):931–937

    Article  CAS  PubMed  Google Scholar 

  • Kazan K, Manners JM (2009) Linking development to defense: auxin in plant–pathogen interactions. Trends Plant Sci 14(7):373–382

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Paggi JM, Park C, Bennett C, Salzberg SL (2019) Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37(8):907–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kruse O, Rupprecht J, Mussgnug JH, Dismukes GC, Hankamer B (2005) Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies. Photochem Photobiol Sci 4(12):957–970

    Article  CAS  PubMed  Google Scholar 

  • Ku Y-S, Sintaha M, Cheung M-Y, Lam H-M (2018) Plant hormone signaling crosstalks between biotic and abiotic stress responses. Int J Mol Sci 19(10):3206

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar L, Futschik ME (2007) Mfuzz: a software package for soft clustering of microarray data. Bioinformation 2(1):5

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing S (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  • Li T, Liu C, Chang X, Li F, Wang T, Huang G, Li R (2023) Genome-wide identification of papain-like cysteine proteases in Citrus sinensis and expression analysis in response to Candidatus Liberibacter asiaticus. J Plant Interact 18(1):2238785

    Article  Google Scholar 

  • Liu X, Zheng Y, Wang-Pruski G, Gan Y, Zhang B, Hu Q, Du Y, Zhao J, Liu L (2019) Transcriptome profiling of periwinkle infected with Huanglongbing (‘Candidatus Liberibacter asiaticus’). Eur J Plant Pathol 153:891–906

    Article  CAS  Google Scholar 

  • Liu H, Wang X, Liu S, Huang Y, Guo Y-X, Xie W-Z, Liu H, ulQamar MT, Xu Q, Chen L-L (2022) Citrus Pan-genome to breeding database (CPBD): a comprehensive genome database for citrus breeding. Mol Plant 15(10):1503–1505

    Article  PubMed  Google Scholar 

  • Liu Y, Dong L, Ran D, Wang S, Qu R, Zheng L, Peng A, He Y, Chen S, Zou X (2023) A Comparative analysis of three rutaceae species reveals the multilayered mechanisms of citrus in response to huanglongbing disease. J Plant Growth Regul 42(12):7564–7579

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods (San Diego, Calif) 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):1–21

    Article  Google Scholar 

  • Lu Y, Yao J (2018) Chloroplasts at the crossroad of photosynthesis, pathogen infection and plant defense. Int J Mol Sci 19(12):3900

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma W, Pang Z, Huang X, Xu J, Pandey SS, Li J, Achor DS, Vasconcelos FNC, Hendrich C, Huang Y (2022) Citrus Huanglongbing is a pathogen-triggered immune disease that can be mitigated with antioxidants and gibberellin. Nat Commun 13(1):529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9):1297–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munir S, He P, Wu Y, He P, Khan S, Huang M, Cui W, He P, He Y (2018) Huanglongbing control: perhaps the end of the beginning. Microb Ecol 76:192–204

    Article  PubMed  Google Scholar 

  • Naidoo S, Visser EA, Zwart L, Du Toit Y, Bhadauria V, Shuey LS (2018) Dual RNA-seq to elucidate the plant–pathogen duel. Curr Issues Mol Biol 27(1):127–142

    Article  PubMed  Google Scholar 

  • Pan R, Chen Y, Deng X, Xu M (2021) Digital gene expression analysis of Huanglongbing affected mandarins (Citrus reticulata Blanco) in response to thermotherapy. Horticultural Plant J 7(1):1–12

    Article  CAS  Google Scholar 

  • Pang Z, Zhang L, Coaker G, Ma W, He S-Y, Wang N (2020) Citrus CsACD2 is a target of Candidatus Liberibacter asiaticus in Huanglongbing disease. Plant Physiol 184(2):792–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng A, Zou X, He Y, Chen S, Liu X, Zhang J, Zhang Q, Xie Z, Long J, Zhao X (2021) Overexpressing a NPR1-like gene from Citrus paradisi enhanced Huanglongbing resistance in C. sinensis. Plant Cell Rep 40(3):529–541

    Article  CAS  PubMed  Google Scholar 

  • Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT, Salzberg SL (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33(3):290–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinto Y, Levanon EY (2019) Computational approaches for detection and quantification of A-to-I RNA-editing. Methods 156:25–31

    Article  CAS  PubMed  Google Scholar 

  • Reed JW (2001) Roles and activities of Aux/IAA proteins in <em>Arabidopsis</em>. Trends Plant Sci 6(9):420–425

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro C, Xu J, Hendrich C, Pandey SS, Yu Q, Gmitter FG Jr, Wang N (2023) Seasonal transcriptome profiling of susceptible and tolerant citrus cultivars to citrus Huanglongbing. Phytopathology® 113(2):286–298

    Article  CAS  PubMed  Google Scholar 

  • Shahzad F, Chun C, Schumann A, Vashisth T (2020) Nutrient uptake in huanglongbing-affected sweet orange: transcriptomic and physiological analysis. J Am Soc Hortic Sci 145(6):349–362

    Article  CAS  Google Scholar 

  • Shetty NP, Jørgensen HJL, Jensen JD, Collinge DB, Shetty HS (2008) Roles of reactive oxygen species in interactions between plants and pathogens. Eur J Plant Pathol 121(3):267–280

    Article  CAS  Google Scholar 

  • Shi J, Gong Y, Shi H, Ma X, Zhu Y, Yang F, Wang D, Fu Y, Lin Y, Yang N, Yang Z, Zeng C, Li W, Zhou C, Wang X, Qiao Y (2023) “Candidatus Liberibacter asiaticus” secretory protein SDE3 inhibits host autophagy to promote Huanglongbing disease in citrus. Autophagy 19(9):2558–2574

    Article  CAS  PubMed  Google Scholar 

  • Shikanai T (2006) RNA editing in plant organelles: machinery, physiological function and evolution. Cell Mol Life Sci CMLS 63:698–708

    Article  CAS  PubMed  Google Scholar 

  • Small ID, Schallenberg-Rüdinger M, Takenaka M, Mireau H, Ostersetzer-Biran O (2020) Plant organellar RNA editing: what 30 years of research has revealed. Plant J 101(5):1040–1056

    Article  CAS  PubMed  Google Scholar 

  • Suh JH, Tang X, Zhang Y, Gmitter FG Jr, Wang Y (2021) Metabolomic analysis provides new insight into tolerance of huanglongbing in citrus. Front Plant Sci 12:710598

  • Talon M, Caruso M, Gmitter jr FG (2020) Chapter 2 - The origin of citrus. In: Talon M, Caruso M, Gmitter FG (eds) The Genus Citrus. Woodhead Publishing, pp 9–31

  • Tang J, Ding Y, Nan J, Yang X, Sun L, Zhao X, Jiang L (2018) Transcriptome sequencing and ITRAQ reveal the detoxification mechanism of Bacillus GJ1, a potential biocontrol agent for Huanglongbing. PLoS ONE 13(8):e0200427

    Article  PubMed  PubMed Central  Google Scholar 

  • Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller LA, Rhee SY, Stitt M (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37(6):914–939

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zhou L, Yu X, Stover E, Luo F, Duan Y (2016) Transcriptome profiling of Huanglongbing (HLB) tolerant and susceptible citrus plants reveals the role of basal resistance in HLB tolerance. Front Plant Sci 7:933

    PubMed  PubMed Central  Google Scholar 

  • Wang Y, Yang Z, Zhang M, Ai P (2022) A chloroplast-localized pentatricopeptide repeat protein involved in RNA editing and splicing and its effects on chloroplast development in rice. BMC Plant Biol 22(1):1–18

    Article  Google Scholar 

  • Weber KC, Mahmoud LM, Stanton D, Welker S, Qiu W, Grosser JW, Levy A, Dutt M (2022) Insights into the mechanism of Huanglongbing tolerance in the Australian finger lime (Citrus australasica). Front Plant Sci 13:1019295

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu S, Liu W, Aljohi HA, Alromaih SA, Alanazi IO, Lin Q, Yu J, Hu S (2018) REDO: RNA editing detection in plant organelles based on variant calling results. J Comput Biol 25(5):509–516

    Article  CAS  PubMed  Google Scholar 

  • Wu F, Liu L, Fox EGP, Deng X, Xu M, Zheng Z, Li X, Fu J, Zhu H, Huang J, Deng T (2023) Physiological variables influenced by “candidatus liberibacter asiaticus” infection in two citrus species. Plant Dis 107(6):1769–1776

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Fan G, Zhao Y, Wen Q, Wu P, Meng Y, Shan W (2020) Cytidine-to-Uridine RNA Editing Factor NbMORF8 Negatively Regulates Plant Immunity to Phytophthora Pathogens. Plant Physiol 184(4):2182–2198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu F, Bi C, Wang X, Qian X, Ye N (2018) The complete mitochondrial genome of Citrus sinensis. Mitochondrial DNA Part B 3(2):592–593

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang A, Xiong Y, Fang J, Liu K, Peng H, Zhang X (2022) Genome-wide identification and expression analysis of peach multiple organellar RNA editing factors reveals the roles of RNA editing in plant immunity. BMC Plant Biol 22(1):583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao W, Baldwin EA, Bai J, Plotto A, Irey M (2019) Comparative analysis of the transcriptomes of the calyx abscission zone of sweet orange insights into the huanglongbing-associated fruit abscission. Hortic Res 6(1):71

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhong Y, Cheng C, Jiang B, Jiang N, Zhang Y, Hu M, Zhong G (2016) Digital gene expression analysis of Ponkan mandarin (Citrus reticulata Blanco) in response to Asia citrus psyllid-vectored Huanglongbing infection. Int J Mol Sci 17(7):1063

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu Q, Dugardeyn J, Zhang C, Mühlenbock P, Eastmond PJ, Valcke R, De Coninck B, Öden S, Karampelias M, Cammue BPA (2014) The Arabidopsis thaliana RNA editing factor SLO2, which affects the mitochondrial electron transport chain, participates in multiple stress and hormone responses. Mol Plant 7(2):290–310

    Article  CAS  PubMed  Google Scholar 

  • Zou X, Zhao K, Liu Y, Du M, Zheng L, Wang S, Xu L, Peng A, He Y, Long Q (2021) Overexpression of salicylic acid carboxyl methyltransferase (Cssamt1) enhances tolerance to huanglongbing disease in wanjincheng orange (citrus sinensis (l.) osbeck). Int J Mol Sci 22(6):2803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank academic editors from TopEdit for their help in grammar improvement.

Funding

This work was supported by the National Natural Science Foundation of China (32160621 and 32260659) and Innovation Fund Designated for Graduate Students of Jiangxi Province (YC2022-S928).

Author information

Authors and Affiliations

Authors

Contributions

CL and XC participated in the design of the experiments, prepared RNA for sequencing, analyzed the data, and drafted the manuscript; FL, YY, and XZ participated in the real-time-quantitative PCR (RT-qPCR) validation and statistical analyses. GH and RL designed the experiments, analyzed the data, and drafted the manuscript.

Corresponding authors

Correspondence to Guiyan Huang or Ruimin Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Handling Editor: April H Hastwell.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

709_2023_1911_MOESM1_ESM.tif

Supplementary file1 (TIF 1269 kb) Figure S1. Analysis of differentially expressed genes in the mitochondrion genome. (A) Volcano map analysis, (B) Heatmap analysis, (C) MapMan analysis.

709_2023_1911_MOESM2_ESM.tif

Supplementary file2 (TIF 1454 kb) Figure S2. RNA editing events observed in genes coded in the mitochondrion genome. (A) Venn diagram analysis, (B) Example genes with RNA editing events.

Supplementary file3 (XLSX 11 kb)

Supplementary file4 (XLSX 515 kb)

Supplementary file5 (XLSX 35 kb)

Supplementary file6 (XLSX 19 kb)

Supplementary file7 (XLSX 19 kb)

Supplementary file8 (XLSX 46 kb)

Supplementary file9 (XLSX 18 kb)

Supplementary file10 (DOCX 15 kb)

Supplementary file11 (XLSX 13 kb)

Supplementary file12 (XLSX 11 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Chang, X., Li, F. et al. Transcriptome analysis of Citrus sinensis reveals potential responsive events triggered by Candidatus Liberibacter asiaticus. Protoplasma 261, 499–512 (2024). https://doi.org/10.1007/s00709-023-01911-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-023-01911-0

Keywords

Navigation