Skip to main content
Log in

Histone acetylation and reactive oxygen species are involved in the preprophase arrest induced by sodium butyrate in maize roots

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Histone acetylation plays a critical role in controlling chromatin structure, and reactive oxygen species (ROS) are involved in cell cycle progression. To study the relationship between histone acetylation and cell cycle progression in plants, sodium butyrate (NaB), a histone deacetylase (HDAC) inhibitor that can cause a significant increase in histone acetylation in both mammal and plant genomes, was applied to treat maize seedlings. The results showed that NaB had significant inhibition effects on different root zones at the tissue level and caused cell cycle arrest at preprophase in the root meristem zones. This effect was accompanied by a dramatic increase in the total level of acetylated lysine 9 on histone H3 (H3K9ac) and acetylated lysine 5 on histone H4 (H4K5ac). The exposure of maize roots in NaB led to a continuous rise of intracellular ROS concentration, accompanied by a higher electrolyte leakage ratio and malondialdehyde (MDA) relative value. The NaB-treated group displayed negative results in both TdT-mediated dUTP nick end labelling (TUNEL) and γ-H2AX immunostaining assays. The expression of topoisomerase genes was reduced after treatment with NaB. These results suggested that NaB increased the levels of H3K9ac and H4K5ac and could cause preprophase arrest accompanied with ROS formation leading to the inhibition of DNA topoisomerase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

NaB:

Sodium butyrate

BSA:

Albumin from bovine serum

PBS:

Phosphate-buffered saline

ROS:

Reactive oxygen species

MDA:

Malondialdehyde

TUNEL:

TdT-mediated dUTP nick end labelling

H3K9ac:

Acetylated lysine 9 on histone H3

H4K5ac:

Acetylated lysine 5 on histone H4

References

  • Bae YS, Kang SW, Seo MS, Baines IC, Tekle E, Chock PB, Rhee SG (1997) Epidermal growth factor (EGF)-induced generation of hydrogen peroxide role in EGF receptor-mediated tyrosine phosphorylation. J Biol Chem 272:217–221

    Article  CAS  PubMed  Google Scholar 

  • Bandyopadhyay D, Mishra A, Medrano EE (2004) Overexpression of histone deacetylase 1 confers resistance to sodium butyrate-mediated apoptosis in melanoma cells through a p53-mediated pathway. Cancer Res 64:7706–7710

    Article  CAS  PubMed  Google Scholar 

  • Bartek J, Lukas J (2001) Mammalian G1-and S-phase checkpoints in response to DNA damage. Curr Opin Cell Biol 13:738–747

    Article  CAS  PubMed  Google Scholar 

  • Beers RF, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140

    CAS  PubMed  Google Scholar 

  • Benková E, Hejátko J (2009) Hormone interactions at the root apical meristem. Plant Mol Biol 69:383–396

    Article  PubMed  Google Scholar 

  • Castano IB, Brzoska PM, Sadoff BU, Chen H, Christman MF (1996) Mitotic chromosome condensation in the rDNA requires TRF4 and DNA topoisomerase I in Saccharomyces cerevisiae. Genes Dev 10:2564–2576

    Article  CAS  PubMed  Google Scholar 

  • Chua YL, Watson LA, Gray JC (2003) The transcriptional enhancer of the pea plastocyanin gene associates with the nuclear matrix and regulates gene expression through histone acetylation. Plant Cell On 15:1468–1479

    Article  CAS  Google Scholar 

  • Chung PJ, Kim YS, Jeong JS, Park SH, Nahm BH, Kim JK (2009) The histone deacetylase OsHDAC1 epigenetically regulates the OsNAC6 gene that controls seedling root growth in rice. Plant J 59:764–776

    Article  CAS  PubMed  Google Scholar 

  • Clayton AL, Hazzalin CA, Mahadevan LC (2006) Enhanced histone acetylation and transcription: a dynamic perspective. Mol Cell 23:289–296

    Article  CAS  PubMed  Google Scholar 

  • Darzynkiewicz Z, Traganos F, Xue S-B, Melamed MR (1981) Effect of n-butyrate on cell cycle progression and in situ chromatin structure of L1210 cells. Exp Cell Res 136:279–293

    Article  CAS  PubMed  Google Scholar 

  • de Kok TM, Driece HA, Hogervorst JG, Briedé JJ (2006) Toxicological assessment of ambient and traffic-related particulate matter: a review of recent studies. Mutat Res/Rev Mutat Res 613:103–122

    Article  Google Scholar 

  • Dickey JS, Redon CE, Nakamura AJ, Baird BJ, Sedelnikova OA, Bonner WM (2009) H2AX: functional roles and potential applications. Chromosoma 118:683–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Draper H, Squires E, Mahmoodi H, Wu J, Agarwal S, Hadley M (1993) A comparative evaluation of thiobarbituric acid methods for the determination of malondialdehyde in biological materials. Free Rad Biol Med 15:353–363

    Article  CAS  PubMed  Google Scholar 

  • Fischle W, Wang Y, Allis CD (2003) Histone and chromatin cross-talk. Curr Opin Cell Biol 15:172–183

    Article  CAS  PubMed  Google Scholar 

  • Fuchs J, Demidov D, Houben A, Schubert I (2006) Chromosomal histone modification patterns—from conservation to diversity. Trends Plant Sci 11:199–208

    Article  CAS  PubMed  Google Scholar 

  • Gajewska E, Skłodowska M (2007) Effect of nickel on ROS content and antioxidative enzyme activities in wheat leaves. Biometals 20:27–36

    Article  CAS  PubMed  Google Scholar 

  • Green R, Fluhr R (1995) UV-B-Induced PR-1 accumulation is mediated by active oxygen species. Plant Cell 7:203–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartwell LH, Weinert TA (1989) Checkpoints: controls that ensure the order of cell cycle events. Science 246:629–634

    Article  CAS  PubMed  Google Scholar 

  • Hu Y et al. (2011) Trichostatin A selectively suppresses the cold-induced transcription of the ZmDREB1 gene in maize PloS one 6:e22132

  • Hug BA, Lazar MA (2004) ETO interacting proteins. Oncogene 23:4270–4274

    Article  CAS  PubMed  Google Scholar 

  • Kim J-M et al (2008) Alterations of lysine modifications on the histone H3 N-tail under drought stress conditions in Arabidopsis thaliana. Plant Cell Physiol 49:1580–1588

    Article  CAS  PubMed  Google Scholar 

  • Kuefer R et al (2004) Sodium butyrate and tributyrin induce in vivo growth inhibition and apoptosis in human prostate cancer. Br J Cancer 90:535–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lallemand F, Courilleau D, Buquet-Fagot C, Atfi A, Montagne M-N, Mester J (1999) Sodium butyrate induces G2 arrest in the human breast cancer cells MDA-MB-231 and renders them competent for DNA rereplication. Exp Cell Res 247:432–440

    Article  CAS  PubMed  Google Scholar 

  • Li L, Yang J, Tong Q, Zhao L, Song Y (2005) A novel approach to prepare extended DNA fibers in plants. Cytometry A 63:114–117

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK, Burgstahler R, Buschmann C et al. (1983) Effect of high light and high light stress on composition, function and structure of the photosynthetic apparatus[M]//Effects of stress on Photosynthesis. Springer Netherlands, pp 353–370

  • Löffler H, Lukas J, Bartek J, Krämer A (2006) Structure meets function—centrosomes, genome maintenance and the DNA damage response. Exp Cell Res 312:2633–2640

    Article  PubMed  Google Scholar 

  • Longhin E, Holme JA, Gutzkow KB, Arlt VM, Kucab JE, Camatini M, Gualtieri M (2013) Cell cycle alterations induced by urban PM2. 5 in bronchial epithelial cells: characterization of the process and possible mechanisms involved. Part Fibre Toxicol 10:63

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu H-R et al (2005) Reactive oxygen species elicit apoptosis by concurrently disrupting topoisomerase II and DNA-dependent protein kinase. Mol Pharmacol 68:983–994

    Article  CAS  PubMed  Google Scholar 

  • Malumbres M, Barbacid M (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9:153–166

    Article  CAS  PubMed  Google Scholar 

  • Marks PA, Richon VM, Rifkind RA (2000) Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J Natl Cancer Inst 92:1210–1216

    Article  CAS  PubMed  Google Scholar 

  • Nigg EA (1995) Cyclin-dependent protein kinases: key regulators of the eukaryotic cell cycle. Bioessays 17:471–480

    Article  CAS  PubMed  Google Scholar 

  • O’Sullivan RJ, Kubicek S, Schreiber SL, Karlseder J (2010) Reduced histone biosynthesis and chromatin changes arising from a damage signal at telomeres. Nat Struct Mol Biol 17:1218–1225

    Article  PubMed  PubMed Central  Google Scholar 

  • Rao R et al (2008) HDAC6 inhibition enhances 17-AAG-mediated abrogation of hsp90 chaperone function in human leukemia cells. Blood 112:1886–1893

    Article  CAS  PubMed  Google Scholar 

  • Schumb WC, Satterfield CN, Wentworth RL (1955) Hydrogen peroxide, american chemical society monograph series. Reinhold Pub. Co.: New York

  • Shapiguzov A, Vainonen JP, Wrzaczek M, Kangasjärvi J (2012) ROS-talk—how the apoplast, the chloroplast, and the nucleus get the message through. Front Plant Sci 3:292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    Article  CAS  PubMed  Google Scholar 

  • Sundaresan M, Yu Z-X, Ferrans VJ, Irani K, Finkel T (1995) Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270:296–299

    Article  CAS  PubMed  Google Scholar 

  • Vos SM, Tretter EM, Schmidt BH, Berger JM (2011) All tangled up: how cells direct, manage and exploit topoisomerase function. Nat Rev Mol Cell Biol 12:827–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Zhao L, Hou H, Zhang H, Huang Y, Wang Y, Li H, Gao F, Yan S, Li L (2015) Epigenetic changes are associated with programmed cell death induced by heat stress in seedling leaves of Zea mays. Plant Cell Physiol. doi:10.1093/pcp/pcv023

  • West G, Inzé D, Beemster GT (2004) Cell cycle modulation in the response of the primary root of Arabidopsis to salt stress. Plant Physiol 135:1050–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan S et al (2013) Comparison of chromatin epigenetic modification patterns among root meristem, elongation and maturation zones in maize (Zea mays L.). Cytogenet Genome Res 143:179–188

    Article  Google Scholar 

  • Zhang L et al (2011) ABA treatment of germinating maize seeds induces VP1 gene expression and selective promoter‐associated histone acetylation. Physiol Plant 143:287–296

    Article  CAS  PubMed  Google Scholar 

  • Zheng XX, Zhou T, Wang XA, Tong XH, Ding JW (2015) Histone deacetylases and atherosclerosis. Atherosclerosis 240:355–366

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the NSFC (No. 31571265 and 31401706 ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijia Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Pavla Binarova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Wang, P., Hou, H. et al. Histone acetylation and reactive oxygen species are involved in the preprophase arrest induced by sodium butyrate in maize roots. Protoplasma 254, 167–179 (2017). https://doi.org/10.1007/s00709-015-0928-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-015-0928-9

Keywords

Navigation