Skip to main content
Log in

Mitochondrial morphology and dynamics in Triticum aestivum roots in response to rotenone and antimycin A

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Mitochondria are dynamic organelles, capable of fusion and fission as a part of cellular responses to various signals, such as the shifts in the redox status of a cell. The mitochondrial electron transport chain (ETC.) is involved in the generation of reactive oxygen species (ROS), with complexes I and III contributing the most to this process. Disruptions of ETC. can lead to increased ROS generation. Here, we demonstrate the appearance of giant mitochondria in wheat roots in response to simultaneous application of the respiratory inhibitors rotenone (complex I of mitochondrial ETC.) and antimycin A (complex III of mitochondrial ETC.). The existence of such megamitochondria was temporary, and following longer treatment with inhibitors mitochondria resumed their conventional size and oval shape. Changes in mitochondrial morphology were accompanied with a decrease in mitochondrial potential and an unexpected increase in oxygen consumption. Changes in mitochondrial morphology and activity may result from the fusion and fission of mitochondria induced by the disruption of mitochondrial ETC. Results from experiments with the inhibitor of mitochondrial fission Mdivi-1 suggest that the retarded fission may facilitate plant mitochondria to appear in a fused shape. The processes of mitochondrial fusion and fission are involved in the regulation of the efficacy of the functions of the respiratory chain complexes and ROS metabolism during stresses. The changes in morphology of mitochondria, along with the changes in their functional activity, can be a part of the strategy of the plant adaptation to stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AO:

Alternative oxidase

2,4-DNP:

2,4-Dinitrophenol

ETC:

Electron transport chain

Mdivi-1:

(3-(2,4-Dichloro-5-methoxyphenyl)-2,3-dihydro-2-thioxo-4 (1H)-quinazolinone)

ROS:

Reactive oxygen species

O2 ·− :

Superoxide anion radical

TMRM:

Tetramethyl rhodamine methyl ester

References

  • Arimura S, Tsutsumi N (2005) Plant mitochondrial fission and fusion. Plant Biotechnol J 22:415–418

    Article  CAS  Google Scholar 

  • Arimura S, Fujimoto M, Doniwa Y, Kadoya N, Nakazono M, Sakamoto W, Tsutsumi N (2008) Arabidopsis ELONGATED MITOCHONDRIA1 is required for localization of DYNAMIN-RELATED PROTEIN3A to mitochondrial fission sites. Plant Cell 20(6):1555–1566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benard G, Rossignol R (2008) Ultrastructure of the mitochondrion and its bearing on function and bioenergetics. Antioxid Redox Signal 10:1313–1343

    Article  CAS  PubMed  Google Scholar 

  • Blokhina O, Fagerstedt KV (2010) Reactive oxygen species and nitric oxide in plant mitochondria: origin and redundant regulatory systems. Physiol Plant 138(4):447–462

    Article  CAS  PubMed  Google Scholar 

  • Brand MD (2010) The sites and topology of mitochondrial superoxide production. Exp Gerontol 45(7–8):466–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bultema JB, Braun HP, Boekema EJ, Kouril R (2009) Megacomplex organization of the oxidative phosphorylation system by structural analysis of respiratory supercomplexes from potato. Biochim Biophys Acta 1787(1):60–67

    Article  CAS  PubMed  Google Scholar 

  • Cassidy-Stone A, Chipuk JE, Ingerman E, Song C, Yoo C, Kuwana T, Kurth MJ, Shaw JT, Hinshaw JE, Green DR, Nunnari J (2008) Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev Cell 14(2):193–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen HC, Chomyn A, Chan DC (2005) Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J Biol Chem 280:26185–26192

    Article  CAS  PubMed  Google Scholar 

  • Cho D-H, Nakamura T, Lipton SA (2010) Mitochondrial dynamics in cell death and neurodegeneration. Cell Mol Life Sci 67:3435–3447

    Article  CAS  PubMed  Google Scholar 

  • Dudkina NV, Kouril R, Peters K, Braun HP, Boekema EJ (2010) Structure and function of mitochondrial supercomplexes. Biochim Biophys Acta 1797:664–670

    Article  CAS  PubMed  Google Scholar 

  • Ekanayake SB, El Zawily AM, Paszkiewicz G, Rolland A, Logan DC (2015) Imaging and analysis of mitochondrial dynamics in living cells. Methods Mol Biol 1305:223–240

    Article  CAS  PubMed  Google Scholar 

  • Eubel H, Heinemeyer J, Sunderhaus S, Braun HP (2004) Respiratory chain supercomplexes in plant mitochondria. Plant Physiol Biochem 42(12):937–942

    Article  CAS  PubMed  Google Scholar 

  • Foissner I (1983) Inhibitor studies on formation of giant mitochondria in Nitella flexilis. Phyton-Ann Rei Bot A 23(1):19–29

    CAS  Google Scholar 

  • Fox TD (2012) Mitochondrial protein synthesis, import and assembly. Genetics 192(4):1203–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furt F, Moreau P (2009) Importance of lipid metabolism for intracellular and mitochondrial membrane fusion/fission processes. Biochem Cell Biol 41:1828–1836

    Article  CAS  Google Scholar 

  • Genova ML, Bianchi C, Lenaz G (2003) Structural organization of the mitochondrial respiratory chain. Ital J Biochem 52(1):58–61

    CAS  PubMed  Google Scholar 

  • Gordon L, Alekseeva V, Bichurina A (1975a) Effect of barbiturates and rotenone on respiration of intact plant tissues. Russ Plant Physiol 22(4):849–851

    CAS  Google Scholar 

  • Gordon L, Alekseeva V, Bichurina A, Golubev A, Kashapova L, Chernysh O, Gerasimov N (1975b) Effect of dehydratation on respiration chain and ultrastructure of the cells of wheat roots. Russ Plant Physiol 22(5):918–923

    CAS  Google Scholar 

  • Gordon L, Rakhmatullina D, Ogorodnikova T, Alyabyev A, Minibayeva F, Loseva N, Mityashina S (2007) The influence of ascorbic acid on the oxygen consumption and the heat production by the cells of wheat seedlings roots with their mitochondrial electron transport chain inhibited at comlexes I and III. Thermochim Acta 458:92–96

    Article  CAS  Google Scholar 

  • Grabelnych O (2005) The energetic functions of plant mitochondria under stress. J Stress Physiol Biochem 1(1):37–54

    Google Scholar 

  • Jacobs S, Martini N, Schauss AC, Egner A, Westermann B, Hell SW (2003) Spatial and temporal dymamics of budding yeast mitochondria lacking the division component Fis1p. J Cell Sci 116:2005–2014

    Article  Google Scholar 

  • Jacoby RP, Li L, Huang S, Pong Lee C, Millar AH, Taylor NL (2012) Mitochondrial composition, function and stress response in plants. J Integr Plant Biol 54(11):887–906

    CAS  PubMed  Google Scholar 

  • Kumar G, Knowles NR (1993) Changes in lipid peroxidation and lipolytic and free-radical scavenging enzyme actvities during aging and sprouting of potato (Solanum tuberosum) seed-tubers. Plant Physiol 102(1):115–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lackner L, Nunnari J (2010) Small molecule inhibitors of mitochondrial division: tools that translate basic biological research into medicine. Chem Biol 17(6):578–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenaz G, Genova ML (2009) Structural and functional organization of the mitochondrial respiratory chain: a dynamic super-assembly. Int J Biochem Cell Biol 41(10):1750–1772

    Article  CAS  PubMed  Google Scholar 

  • Lenaz G, Genova ML (2010) Structure and organization of mitochondrial respiratory complexes: a new understanding of an old subject. Antioxid Redox Signal 12(8):961–1008

    Article  CAS  PubMed  Google Scholar 

  • Logan DC (2007) The mitochondrial compartment. J Exp Bot 57:1225–1243

    Article  Google Scholar 

  • Logan DC (2010) The dynamic plant chondriome. Semin Cell Dev Biol 21:550–557

    Article  CAS  PubMed  Google Scholar 

  • Logan DC, Scott I, Tobin AK (2004) ADL2a, like ADL2b, is involved in the control of higher plant mitochondrial morphology. J Exp Bot 55(397):783–785

    Article  CAS  PubMed  Google Scholar 

  • Millenaar FF, Lambers H (2003) The alternative oxidase; in vivo regulation and function. Plant Biol 5:2–15

    Article  CAS  Google Scholar 

  • Minibayeva F, Dmitrieva S, Ponomareva A, Ryabovol V (2012) Oxidative stress-induced autophagy in plants: the role of mitochondria. Plant Physiol Biochem 59:9–11

    Article  Google Scholar 

  • Møller IM (1997) The oxidation of cytosolic NAD(P)H by external NAD(P)H dehydrogenases in the respiratory chain of plant mitochondria. Physiol Plant 100:85–90

    Article  Google Scholar 

  • Møller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52:561–591

    Article  PubMed  Google Scholar 

  • Møller IM, Palmer JM (1982) Direct evidence for the presence of a rotenone-resistant NADH dehydrogenase on the inner surface of the inner membrane of plant mitochondria. Physiol Plant 54:267–274

    Article  Google Scholar 

  • Mozdy AD, Shaw JM (2003) A fuzzy mitochondrial fusion apparatus comes into focus. Nat Rev Mol Cell Biol 4:468–478

    Article  CAS  PubMed  Google Scholar 

  • Muster B, Kohl W, Witting I, Strecker V, Joos F, Haase W, Bereiter-Hahn J, Busch K (2010) Respiratory chain complexes in dynamic mitochondria display a patchy distribution in life cells. PLoS ONE 5(7):e11910. doi:10.1371/journal. pone.0011910

    Article  PubMed  PubMed Central  Google Scholar 

  • Pastore D, Trono D, Laus MN, Di Fonzo N, Flagella Z (2007) Possible plant mitochondria involvement in cell adaptation to drought stress. A case study: durum wheat mitochondria. J Exp Bot 58(2):195–210

    Article  CAS  PubMed  Google Scholar 

  • Ponomareva AA, Polygalova OO (2012) Changes in mitochondrial shape in wheat root cells exposed to mitochondrial poisons. Russ Plant Physiol 59(3):428–433

    Article  CAS  Google Scholar 

  • Rasmusson AG, Møller IM (1991) NAD(P)H dehydrogenases on the inner surface of the inner mitochondrial membrane studied using inside-out submitochondrial particles. Physiol Plant 83:357–365

    Article  CAS  Google Scholar 

  • Rasmusson AG, Heiser V, Zabaleta E, Brennicke A, Grohmann L (1998) Physiological, biochemical and molecular aspects of mitochondrial complex I in plants. Biochim Biophys Acta 1364:101–111

    Article  CAS  PubMed  Google Scholar 

  • Rasmusson AG, Svensson AS, Knoop V, Grohmann L, Brennicke A (1999) Homologues of yeast and bacterial rotenone-insensitive NADH dehydrogenases in higher eukaryotes: two enzymes are present in potato mitochondria. Plant J 20:79–87

    Article  CAS  PubMed  Google Scholar 

  • Roberts TH, Fredlund KM, Møller IM (1995) Direct evidence for the presence of 2 external NAD(P)H dehydrogenases coupled to the electron transport chain in plant mitochondria. FEBS Lett 373(3):307–309

    Article  CAS  PubMed  Google Scholar 

  • Segui-Simarro JM, Coronado MJ, Staehelin LA (2008) The mitochondrial cycle of Arabidopsis shoot apical meristem leaf primordium meristematic cells is defined by a perinuclear tentaculate/cage-like mitochondrion. Plant Physiol 148:1380–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skulachev VP (1998) Uncoupling: new approaches to an old problem of bioenergetics. Biochem Biophys Acta 1363(2):100–124

    CAS  PubMed  Google Scholar 

  • Sunderhaus S, Klodmann J, Lenz C, Brawn H-P (2010) Supramolecular structure of the OXPHOS system in highly thermogenic tissue of Arum maculatum. Plant Physiol Biochem 48(4):265–272

    Article  CAS  PubMed  Google Scholar 

  • Twig G, Hyde B, Shirihai OS (2008) Mitochondrial fusion fission and autophagy as a quality control axis: the bioenergetic view. Biochim Biophys Acta 1777(9):1092–1097

    Article  CAS  PubMed  Google Scholar 

  • Van Gestel K, Verbelen J-P (2002) Giant mitochondria are a response to low oxygen pressure in cells of tabacco (Nicotiana tabacum L.). J Exp Bot 53:1215–1218

    Article  PubMed  Google Scholar 

  • Vartapetian BB, Andreeva IN, Generosova IP, Polyakova LI, Maslova IP, Dolgikh YI, Stepanova AY (2003) Functional electron microscopy in studies of plant response and adaptation to anaerobic stress. Ann Bot 91:155–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venditti P, Di Stefano L, Di Meo S (2013) Mitochondrial metabolism of reactive oxygen species. Mitochondrion 13(2):71–82

    Article  CAS  PubMed  Google Scholar 

  • Westermann B (2012) Bioenergetic role of mitochondrial fusion and fission. Biochim Biophys Acta 1817(10):1833–1838

    Article  CAS  PubMed  Google Scholar 

  • Wolff S (1994) Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxides. Method Enzymol 223:182–189

    Article  Google Scholar 

Download references

Acknowledgments

We thank Mrs. Tatyana Ogorodnikova for excellent technical assistance. This study was carried out with financial support from the Russian Foundation for Basic Research (No. 14-04-00205, 13-04-00865), the Federal Program of the Ministry of Education and Science of the RF (No. 8117 from 23 July 2012), and the Program of the Presidium of Russian Academy of Sciences “Molecular and Cellular Biology,” with support from Higher Scientific Schools (No. 825.2012.4).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farida Minibayeva.

Additional information

Handling Editor: Liwen Jiang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakhmatullina, D., Ponomareva, A., Gazizova, N. et al. Mitochondrial morphology and dynamics in Triticum aestivum roots in response to rotenone and antimycin A. Protoplasma 253, 1299–1308 (2016). https://doi.org/10.1007/s00709-015-0888-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-015-0888-0

Keywords

Navigation