Skip to main content

Advertisement

Log in

Investigating the roles of ascorbate-glutathione cycle and thiol metabolism in arsenate tolerance in ridged Luffa seedlings

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

The present study is aimed to investigate whether ascorbate-glutathione cycle (AsA-GSH cycle) or thiol metabolism is involved in the regulation of arsenate (AsV)-induced oxidative stress and tolerance in ridged Luffa seedlings. AsV significantly (p < 0.05) declined the growth of Luffa seedlings which was accompanied by the enhanced accumulation of As. The enhanced accumulation of As in tissues declined total protein and nitrogen contents and photosynthesis, and increased the accumulation of reactive oxygen species (ROS). The enhanced levels of ROS cause damage to lipids and proteins as indicated by the increased contents of malondialdehyde (MDA) and reactive carbonyl groups (RCG). The components of AsA-GSH cycle such as ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, and reduced ascorbate were downregulated, while glutathione reductase and glutathione were upregulated by AsV stress. Thiol metabolic enzymes such as cysteine synthase, γ-glutamylcysteine synthetase, and glutathione synthetase, and compounds such as cysteine, glutathione, and non-protein thiols were stimulated by AsV stress. These results suggest that thiol metabolism plays a key role in mitigating AsV-mediated further damage to Luffa seedlings, while AsA-GSH cycle components had a little role in imparting AsV tolerance. The present study provides information regarding the involvement of AsA-GSH cycle and thiol metabolism in imparting AsV tolerance in Luffa. The results of this study can be utilized for AsV toxicity management in Luffa while keeping these biochemical components into consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AsA-GSH cycle:

Ascorbate-glutathione cycle

γ-ECS:

γ-glutamylcysteine synthetase

CS:

Cysteine synthase

F 0 :

Minimal fluorescence in dark-adapted leaves

F m :

Maximum fluorescence in dark-adapted leaves

F v :

Variable fluorescence

F v/F m :

Maximum photochemical efficiency of photosystem II

GS:

Glutathione synthetase

MDA:

Malondialdehyde

NPQ:

Non-photochemical quenching

NP-SH:

Non-protein thiols

qP:

Photochemical quenching

RCG:

Reactive carbonyl groups

ROS:

Reactive oxygen species

SOR:

Superoxide radical

References

  • Ahamed S, Sengupta MK, Mukherjee A, Amir Hossain M, Das B, Nayak B, Pal A, Chakraborti D (2006) Arsenic groundwater contamination and its health effects in the state of Uttar Pradesh (UP) in upper and middle Ganga plain, India: a severe danger. Sci Total Environ 370:310–322

    Article  CAS  PubMed  Google Scholar 

  • Arvind P, Prasad MNV (2005) Modulation of cadmium-induced oxidative stress in Ceratophyllum demersum by zinc involves ascorbate-glutathione cycle and glutathione metabolism. Plant Physiol Biochem 43:107–116

    Article  Google Scholar 

  • Brehe JE, Burch HB (1976) Enzymatic assay for glutathione. Anal Biochem 74:189–197

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Gallie DR (2012) Violaxanthin de-epoxidase is rate-limiting for non-photochemical quenching under sub-saturating light or during chilling in Arabidopsis. Plant Physiol Biochem 58:66–82

    Article  CAS  PubMed  Google Scholar 

  • Ding W, Liu W, Cooper KL, Qin XJ, de Souza Bergo PL, Hudson LG, Liu KJ (2009) Inhibition of poly (ADP-ribose) polymerase-1 by arsenite interferes with repair of oxidative DNA damage. J Biol Chem 284:6809–6817

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dwivedi S, Tripathi RD, Srivastava S, Singh R, Kumar A, Tripathi P, Dave R, Rai UN, Chakrabarty D, Trivedi PK, Tuli R, Adhikari B, Bag MK (2010) Arsenic affects mineral nutrients in grains of various Indian rice (Oryza sativa L.) genotypes grown on arsenic-contaminated soils of West Bengal. Protoplasma 245:113–124

    Article  CAS  PubMed  Google Scholar 

  • Ellmann GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  Google Scholar 

  • Elstner EF, Heupel A (1976) Inhibition of nitrite formation from hydroxylammonium chloride: a simple assay for superoxide dismutase. Anal Biochem 70:616–620

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gaitonde MK (1967) A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. Biochem J 104:627–633

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gossett DR, Millhollon EP, Cran LM (1994) Antioxidant response to NaCl stress in salt-sensitive cultivars of cotton. Crop Sci 34:706–714

    Article  CAS  Google Scholar 

  • Gusman GS, Oliveira JA, Farnese FS, Cambraia J (2013) Mineral nutrition and enzymatic adaptation induced by arsenate and arsenite exposure in lettuce plants. Plant Physiol Biochem 71:307–314

    Article  CAS  PubMed  Google Scholar 

  • Harada E, Coi YE, Tsuchisaka A, Obata H, Sano H (2001) Transgenic tobacco plants expressing a rice cysteine synthase gene are tolerant to toxic levels of cadmium. J Plant Physiol 158:655–661

    Article  CAS  Google Scholar 

  • Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611

    Article  CAS  Google Scholar 

  • Hossain MA, Nakano Y, Asada K (1984) Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide. Plant Cell Physiol 25:385–395

    CAS  Google Scholar 

  • Huang CS, He W, Meister A, Anderson ME (1995) Amino acid sequence of rat kidney glutathione synthetase. Proc Natl Acad Sci U S A 92:1232–1236

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krupenina NA, Bulychev AA, Schreiber U (2011) Chlorophyll fluorescence images demonstrate variable pathways in the effects of plasma membrane excitation on electron flow in chloroplasts of Chara cells. Protoplasma 248:513–522

    Article  CAS  PubMed  Google Scholar 

  • Lang CA (1958) Simple microdetermination of Kjeldahl nitrogen in biological materials. Anal Chem 30:1692–1694

    Article  CAS  Google Scholar 

  • Levine RL, Williams JA, Stadtman ER, Shacter E (1994) Carbonyl assay for determination of oxidatively modified proteins. Methods Enzymol 233:346–357

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • McClintock TR, Chen Y, Bundschuh J, Oliver JT, Navoni J, Olmos V, Lepori EV, Ahsan H, Parvez F (2012) Arsenic exposure in Latin America: biomarkers, risk assessments and related health effects. Sci Total Environ 429:76–91

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Trivedi PK (2008) Thiol metabolism and antioxidant systems complement each other during arsenate detoxification in Ceratophyllum demersum L. Aquat Toxicol 86:205–215

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Namdjoyan S, Kermanian H (2013) Exogenous nitric oxide (as sodium nitroprusside) ameliorates arsenic-induced oxidative stress in watercress (Nasturtium officinale R. Br.) plants. Sci Hortic 161:350–356

    Article  CAS  Google Scholar 

  • Pandey V, Dixit V, Shyam R (2009) Chromium effect on ROS generation and detoxification in pea (Pisum sativum) leaf chloroplasts. Protoplasma 236:85–95

    Article  CAS  PubMed  Google Scholar 

  • Patel KS, Shrivas K, Brandt R, Jakubowski N, Corns W, Hoffmann P (2005) Arsenic contamination in water, soil, sediment and rice of central India. Environ Geochem Health 27:131–145

    Article  CAS  PubMed  Google Scholar 

  • Poonsawat W, Theerawitaya C, Suwan T, Mongkolsiriwatana C, Samphumphuang T, Cha-Um S, Kirdmanee C (2014) Regulation of some salt defense-related genes in relation to physiological and biochemical changes in three sugarcane genotypes subjected to salt stress. Protoplasma. doi:10.1007/s00709-014-0676-2

    PubMed  Google Scholar 

  • Ralph PJ, Burchett MD (1998) Photosynthetic response of Halophila ovalis to heavy metal stress. Environ Pollut 103:91–101

    Article  CAS  Google Scholar 

  • Saito K, Kurosawa M, Tatsuguchi K, Takagi Y, Murakoshi I (1994) Modulation of cysteine biosynthesis in chloroplasts of transgenic tobacco overexpressing cysteine synthase [o-acetylserine (thiol)-lyase]. Plant Physiol 106:887–895

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schaedle M, Bassham JA (1977) Chloroplast glutathione reductase. Plant Physiol 59:1011–1012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seelig GF, Meister A (1984) γ-glutamylcysteine synthetase: interactions of an essential sulfhydryl group. J Biol Chem 259:3534–3538

    CAS  PubMed  Google Scholar 

  • Shaibur MR, Islam T, Kawai S (2009) Response of leafy vegetable kalmi (water spinach; Ipomoea aquatica L.) at elevated concentrations of arsenic in hydroponic culture. Water Air Soil Pollut 202:289–300

    Article  CAS  Google Scholar 

  • Shekhawat GS, Verma K, Jana S, Singh K, Teotia P, Prasad A (2010) In vitro biochemical evaluation of cadmium tolerance mechanism in callus and seedlings of Brassica juncea. Protoplasma 239:31–38

    Article  CAS  PubMed  Google Scholar 

  • Singh VP, Srivastava PK, Prasad SM (2012) Differential effects of UV-B radiation fluence rates on growth, photosynthesis, and phosphate metabolism in two cyanobacteria under copper toxicity. Toxicol Environ Chem 94:1511–1535

    Article  CAS  Google Scholar 

  • Singh VP, Srivastava PK, Prasad SM (2013) Nitric oxide alleviates arsenic-induced toxic effects in ridged Luffa seedlings. Plant Physiol Biochem 71:155–163

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Mishra S, Dwivedi S, Tripathi RD (2010) Role of thiol metabolism in arsenic detoxification in Hydrilla verticillata (L.f.) Royle. Water Air Soil Pollut 212:155–165

    Article  CAS  Google Scholar 

  • Sung DY, Kim TH, Komives EA, Mendoza-Cozatl DG, Schroeder JI (2009) ARS5 is a component of the 26S proteasome complex, and negatively regulates thiol biosynthesis and arsenic tolerance in Arabidopsis. Plant J 59:802–812

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Talaat NB (2014) Effective microorganisms enhance the scavenging capacity of the ascorbate-glutathione cycle in common bean (Phaseolus vulgaris L.) plants grown in salty soils. Plant Physiol Biochem 80:136–143

    Article  CAS  PubMed  Google Scholar 

  • Talukdar D, Talukdar T (2014) Coordinated response of sulfate transport, cysteine biosynthesis, and glutathione-mediated antioxidant defense in lentil (Lens culinaris Medik.) genotypes exposed to arsenic. Protoplasma 251:839–855

    Article  CAS  PubMed  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant system in acid rain-treated bean plants. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Verma K, Shekhawat GS, Sharma A, Mehta SK, Sharma V (2008) Cadmium induced oxidative stress and changes in soluble and ionically bound cell wall peroxidase activities in roots of seedling and 3-4 leaf stage plants of Brassica juncea (L.) czern. Plant Cell Rep 27:1261–1269

    Article  CAS  PubMed  Google Scholar 

  • Wirtz M, Hell R (2007) Dominant-negative modification reveals the regulatory function of the multimeric cysteine synthase protein complex in transgenic tobacco. Plant Cell 19:625–639

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yi H, Galant A, Ravilious GE, Preuss ML, Jez JM (2010) Sensing sulfur conditions: simple to complex protein regulatory mechanisms in plant thiol metabolism. Mol Plant 3:269–279

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors are thankful to the University Grants Commission, New Delhi for providing financial assistance to carry out this work. One of the authors, JK, is thankful to UGC for providing financial assistance as JRF under the scheme RGNF-2012-13-SCUTT-33185.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vijay Pratap Singh or Sheo Mohan Prasad.

Additional information

Handling Editor: Néstor Carrillo

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V.P., Singh, S., Kumar, J. et al. Investigating the roles of ascorbate-glutathione cycle and thiol metabolism in arsenate tolerance in ridged Luffa seedlings. Protoplasma 252, 1217–1229 (2015). https://doi.org/10.1007/s00709-014-0753-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-014-0753-6

Keywords

Navigation