Skip to main content
Log in

Transmembrane 6 superfamily 1 (Tm6sf1) is a novel lysosomal transmembrane protein

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

The lysosome is a membrane-bound organelle involved in the turnover of various intracellular and extracellular macromolecules. These are degraded by acidic hydrolases in the lumen of lysosome. The lysosomal membrane is important not only in retaining the acidic hydrolases to protect cells against cytosolic proteolysis, but it also facilitates protein trafficking though organelle fusion. In this study, we report on a novel lysosomal membrane protein transmembrane 6 superfamily 1 (Tm6sf1). Expression of Tm6sf1-DsRed fusion proteins in HEK293A cells displayed punctate or ringlike vesicles, which colocalized with conventional lysosome markers including LAMP1/2, RAB7, and Rnf167. Using fluorescence time-lapse live cell imaging, we demonstrated the fusion of Tm6sf1 vesicles with lysosomes and the integration of Tm6sf1 into the lysosomal membrane. We also examined the expression of Tm6sf1 in mouse tissues and found immunopositive signals in major organs such as the cerebellum, kidney, and intestine. These data suggest that Tm6sf1 is a widely expressed lysosomal transmembrane protein and can be used as a novel marker of lysosome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Boya P (2012) Lysosomal function and dysfunction: mechanism and disease. Antioxid Redox Signal 17:766–774

    Article  CAS  PubMed  Google Scholar 

  • Callahan JW, Bagshaw RD, Mahuran DJ (2009) The integral membrane of lysosomes: its proteins and their roles in disease. J Proteomics 72:23–33

    Article  CAS  PubMed  Google Scholar 

  • Carim-Todd L, Escarceller M, Estivill X, Sumoy L (2000) Cloning of the novel gene TM6SF1 reveals conservation of clusters of paralogous genes between human chromosomes 15q24--q26 and 19p13.3--p12. Cytogenet Cell Genet 90:255-260

  • Gao C, Yu CK, Qu S, San MW, Li KY, Lo SW, Jiang L (2012) The Golgi-localized Arabidopsis endomembrane protein12 contains both endoplasmic reticulum export and Golgi retention signals at its C terminus. Plant Cell 24:2086–2104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Holmen OL, Zhang H, Fan Y, Hovelson DH, Schmidt EM, Zhou W, Guo Y, Zhang J, Langhammer A, Lochen ML, Ganesh SK, Vatten L, Skorpen F, Dalen H, Pennathur S, Chen J, Platou C, Mathiesen EB, Wilsgaard T, Njolstad I, Boehnke M, Chen YE, Abecasis GR, Hveem K, Willer CJ (2014) Systematic evaluation of coding variation identifies a candidate causal variant in TM6SF2 influencing total cholesterol and myocardial infarction risk. Nat Genet 46:345–351

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kozlitina J, Smagris E, Stender S, Nordestgaard BG, Zhou HH, Tybjaerg-Hansen A, Vogt TF, Hobbs HH, Cohen JC (2014) Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 46:352–356

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lubke T, Lobel P, Sleat DE (2009) Proteomics of the lysosome. Biochim Biophys Acta 1793:625–635

    Article  PubMed Central  PubMed  Google Scholar 

  • Luzio JP, Pryor PR, Bright NA (2007) Lysosomes: fusion and function. Nat Rev Mol Cell Biol 8:622–632

    Article  CAS  PubMed  Google Scholar 

  • Mahdessian H, Taxiarchis A, Popov S, Silveira A, Franco-Cereceda A, Hamsten A, Eriksson P, Van’t Hooft F (2014) TM6SF2 is a regulator of liver fat metabolism influencing triglyceride secretion and hepatic lipid droplet content. Proc Natl Acad Sci U S A 111:8913–8918

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Potter SS, Hartman HA, Kwan KM, Behringer RR, Patterson LT (2007) Laser capture-microarray analysis of Lim1 mutant kidney development. Genesis 45:432–439

    Article  CAS  PubMed  Google Scholar 

  • Ricketts CJ, Hill VK, Linehan WM (2014) Tumor-specific hypermethylation of epigenetic biomarkers, including SFRP1, predicts for poorer survival in patients from the TCGA Kidney Renal Clear Cell Carcinoma (KIRC) project. PLoS One 9:e85621

    Article  PubMed Central  PubMed  Google Scholar 

  • Saftig P, Klumperman J (2009) Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat Rev Mol Cell Biol 10:623–635

    Article  CAS  PubMed  Google Scholar 

  • Schroder BA, Wrocklage C, Hasilik A, Saftig P (2010) The proteome of lysosomes. Proteomics 10:4053–4076

    Article  PubMed  Google Scholar 

  • Schwake M, Schroder B, Saftig P (2013) Lysosomal membrane proteins and their central role in physiology. Traffic 14:739–748

    Article  CAS  PubMed  Google Scholar 

  • Skalsky RL, Samols MA, Plaisance KB, Boss IW, Riva A, Lopez MC, Baker HV, Renne R (2007) Kaposi’s sarcoma-associated herpesvirus encodes an ortholog of miR-155. J Virol 81:12836–12845

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tao R, Li J, Xin J, Wu J, Guo J, Zhang L, Jiang L, Zhang W, Yang Z, Li L (2011) Methylation profile of single hepatocytes derived from hepatitis B virus-related hepatocellular carcinoma. PLoS One 6:e19862

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wong VW, Wong GL, Tse CH, Chan HL (2014) Prevalence of the TM6SF2 variant and non-alcoholic fatty liver disease in Chinese. J Hepatol

  • Yu L, McPhee CK, Zheng L, Mardones GA, Rong Y, Peng J, Mi N, Zhao Y, Liu Z, Wan F, Hailey DW, Oorschot V, Klumperman J, Baehrecke EH, Lenardo MJ (2010) Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465:942–946

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Freddie Kwok for the technical support on live cell imaging. The work described in this paper was supported by grants from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. CUHK2/CRF/11G and AoE/M-05/12).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kin Ming Kwan.

Additional information

Handling Editor: Reimer Stick

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Video 1

Fluorescence time-lapse live imaging video showing budding of Tm6sf1 vesicle (red) and fusion with LAMP1+ve lysosome (green) (AVI 177 kb)

Supplementary Video 2

Fluorescence time-lapse live imaging video showing the integration of Tm6sf1 (red) into LAMP1+ve lysosomal membrane (green) (AVI 492 kb)

Supplementary Fig. 1

Tm6sf1 (red) did not colocalize with early endosome (EEA1, green), Cis-Golgi (GM130, green), Trans-Golgi (GalTase, green), mitochondria (COXIV, green), plasma membrane (CD44, green) and cytoskeleton markers (α-tubulin, green). Scale bars: 20 μm (GIF 1.7 mb)

High resolution image

(TIFF 4.81 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tam, W.Y., Jiang, L. & Kwan, K.M. Transmembrane 6 superfamily 1 (Tm6sf1) is a novel lysosomal transmembrane protein. Protoplasma 252, 977–983 (2015). https://doi.org/10.1007/s00709-014-0733-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-014-0733-x

Keywords

Navigation