Skip to main content
Log in

Scattering of shear horizontal waves by the piezomagnetic material cylinder embedded in an elastic medium

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Scattering behaviors of shear horizontal (SH) waves by the piezomagnetic cylinder embedded in an infinite elastic medium are investigated. The effective material constants of the piezomagnetic cylinder are changed with the magnetic field and compressive stress. By applying the method of wave function expansion, the governing differential equations of the scattered SH waves are solved and the mechanical displacement, dynamic stress, magnetic potential, and magnetic induction strength affected by the magnetic field and compressive stress are obtained. It is found that the mechanical displacement increases as the magnetic field strength increases while this tendency is reversed when applying compressive stress. The circumferential dynamic stress, magnetic potential, and magnetic induction strength increase as the magnetic field strength increases, respectively. But, the variation of the radial dynamic stress with the magnetic field is complex. The findings presented in this article are useful for designing magneto-elastic acoustic wave devices with high performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Liu, X., Tian, S., Tao, F.: A review of artificial neural networks in the constitutive modeling of composite materials. Compos. Part B Eng. 224, 109152 (2021)

    Google Scholar 

  2. Jule, L.T., Ramaswamy, K., Nagaprasad, N.: Design and analysis of serial drilled hole in composite material. Mater. Today 45, 5759–5763 (2021)

    Google Scholar 

  3. Zaghloul, M.Y.M.: Developments in polyester composite materials—an in-depth review on natural fibres and nano fillers. Compos. Struct. 278, 114698 (2021)

    Google Scholar 

  4. Dinzart, F., Sabar, H., Berbenni, S.: Homogenization of multi-phase composites based on a revisited formulation of the multi-coated inclusion problem. Int. J. Eng. Sci. 100, 136–151 (2016)

    MathSciNet  Google Scholar 

  5. Tian, W., Qi, L., Su, C.: Numerical simulation on elastic properties of short-fiber-reinforced metal matrix composites: Effect of fiber orientation. Compos. Struct. 152, 408–417 (2016)

    Google Scholar 

  6. To, Q.D., Bonnet, G., Hoang, D.H.: Explicit effective elasticity tensors of two-phase periodic composites with spherical or ellipsoidal inclusions. Int. J. Solids Struct. 94, 100–111 (2016)

    Google Scholar 

  7. Adessina, A., Barthélémy, J.F., Lavergne, F.: Effective elastic properties of materials with inclusions of complex structure. Int. J. Eng. Sci. 119, 1–15 (2017)

    Google Scholar 

  8. Zhang, Z.J., Zhu, Y.K., Zhang, P.: Analytic approximations for the elastic moduli of two-phase materials. Phys. Rev. B 95(13), 134107 (2017)

    Google Scholar 

  9. Faran Jr., James J.: Sound scattering by solid cylinders and spheres. J. Acoust. Soc. Am. 23(4), 405–418 (1951)

  10. Pao, Y.H., Mow, C.C.: Diffraction of Elastic Waves and Dynamic Stress Concentrations. Russak & Co., Inc, New York, Crane (1973)

    Google Scholar 

  11. Bogan, S.D., Hinders, M.K.: Dynamic stress concentrations in fiber-reinforced composites with interface layers. J. Compos. Mater. 27(13), 1272–1311 (1993)

    Google Scholar 

  12. Honarvar, F., Sinclair, A.N.: Acoustic wave scattering from transversely isotropic cylinders. J. Acoust. Soc. Am. 100(1), 57–63 (1996)

    Google Scholar 

  13. Zhang, Y.G.: SH wave scattering and dynamic stress concentration at the interface of an entrapment in a medium. J. Daqing Pet. Inst. 33(4), 80–83 (2009)

    Google Scholar 

  14. Tao, M., Yao, J., Li, X.B.: Dynamic stress concentration laws of cylindrical inclusion under incidence plane P waves. Gold Sci. Techn. 30(5), 691–703 (2022)

    Google Scholar 

  15. Paskaramoorthy, R., Meguid, S.A.: Large internal stresses in particle-reinforced composites subjected to dynamic loads. Compos. Sci. Technol. 59(9), 1361–1367 (1999)

    Google Scholar 

  16. Fang, X.Q., Hu, C., Huang, W.H.: Dynamic effective properties of semi-infinite random unidirectional fiber-reinforced composites subjected to anti-plane shear waves. Compos. Struct. 83(2), 159–167 (2008)

    Google Scholar 

  17. Yang, Z., Bian, J., Song, Y.: Scattering of cylindrical inclusions in half space with inhomogeneous shear modulus due to SH wave. Arch. Appl. Mech. 91(7), 3449–3461 (2021)

    Google Scholar 

  18. Ru, Y., Wang, G.F., Wang, T.J.: Diffractions of elastic waves and stress concentration near a cylindrical nano-inclusion incorporating surface effect. J. Vib. Acoust. 131(6), 061011 (2009)

    Google Scholar 

  19. Fang, X.Q., Zhang, L.L., Liu, J.X.: Surface/Interface effect on dynamic stress around a nanoinclusion in a semi-infinite slab under shear waves. J. Vib. Acoust. 134(6), 061011 (2012)

    Google Scholar 

  20. Ou, Z.Y., Lee, D.W.: Effects of interface energy on scattering of plane elastic wave by a nano-sized coated fiber. J. Sound Vib. 331(25), 5623–5643 (2012)

    Google Scholar 

  21. Ou, Z.Y., Lee, D.W.: Effects of interface energy on multiple scattering of plane compressional waves by two cylindrical fibers. Int. J. Appl. Mech. 4(4), 1250040 (2012)

    Google Scholar 

  22. Ghanei, M.A.R., Hosseini, T.P.: Scattering of elastic P-and SV-waves by a circular coated nanofiber based on Gurtin-Murdoch model of surface elasticity: Scattering cross section results. Mech. Adv. Mater. Struct. 24(6), 469–481 (2017)

    Google Scholar 

  23. Tressler, J.F., Alkoy, S., Dogan, A.: Functional composites for sensors, actuators and transducers. Compos. Part A Appl. Sci. 30(4), 477–482 (1999)

    Google Scholar 

  24. Chan, H.L.W., Unsworth, J.: Simple model for piezoelectric ceramic/polymer 1–3 composites used in ultrasonic transducer applications. IEEE T. Ultrason. Ferrelectr. 36(4), 434–441 (1989)

    Google Scholar 

  25. Zhang, Q.M., Wang, H., Cross, L.E.: Piezoelectric tubes and tubular composites for actuator and sensor applications. J. Mater. Sci. 28, 3962–3968 (1993)

    Google Scholar 

  26. Yang, Z., Wang, H., Zeng, D.: Dynamic modeling of 1–3 piezoelectric composite hydrophone and its experimental validation. Compos. Struct. 150, 246–254 (2016)

    Google Scholar 

  27. Qian, Z., Jin, F., Wang, Z.: Investigation of scattering of elastic waves by cylinders in 1–3 piezocomposites. Ultrasonics 43(10), 822–831 (2005)

    Google Scholar 

  28. Qian, Z., Jin, F., Kishimoto, K.: Scattering of elastic P-waves by a transversely isotropic piezoelectric cylinder embedded in a polymer matrix. Smart Mater. Struct. 17(4), 045019 (2008)

    Google Scholar 

  29. Kamali, M.T., Shodja, H.M.: The scattering of electro-elastic waves by a spherical piezoelectric particle in a polymer matrix. Int. J. Eng. Sci. 44(10), 633–649 (2006)

    Google Scholar 

  30. Kamali, M.T., Shodja, H.M.: The scattering of P-waves by a piezoelectric particle with FGPM interfacial layers in a polymer matrix. Int. J. Solids Struct. 47(18–19), 2390–2397 (2010)

    Google Scholar 

  31. Liang, H., Huang, L.H., Liang, T.: Higher-order analysis of piezo magnetic microchips. Wave. Random Complex 1–26 (2022)

  32. Dai, B., He, Z., Yang, Z.: Modeling and analysis of the piezomagnetic, electromagnetic, and magnetostrictive effects in a magnetostrictive transducer. Aip Adv. 11(12), 1–13 (2021)

    Google Scholar 

  33. Deng, T., Chen, Z., Di, W.: Significant improving magnetoelectric sensors performance based on optimized magnetoelectric composites via heat treatment. Smart Mater. Struct. 30(8), 085005 (2021)

    Google Scholar 

  34. Soh, A.K., Liu, J.X.: Interfacial shear horizontal waves in a piezoelectric-pieozmagnetic bi-material. Philos. Mag. Lett. 86(1), 31–35 (2006)

    Google Scholar 

  35. Huang, Y., Li, X.F., Lee, K.Y.: Interfacial shear horizontal (SH) waves propagating in a two-phase piezoelectric/piezomagnetic structure with an imperfect interface. Philos. Mag. Lett. 89(2), 95–103 (2009)

    Google Scholar 

  36. Sun, W.H., Ju, G.L., Pan, J.W., Li, Y.D.: Effects of the imperfect interface and piezoelectric/piezomagnetic stiffening on the SH wave in a multiferroic composite. Ultrasonics 51(7), 831–838 (2011)

    Google Scholar 

  37. Chen, J., Pan, E., Chen, H.: Wave propagation in magneto-electro-elastic multilayered plates. Int. J. Solids Struct. 44(3–4), 1073–1085 (2006)

    Google Scholar 

  38. Li, Y.D., Xiong, T., Guan, Y.: Effects of coupled interfacial imperfections on SH wave propagation in a layered multiferroic cylinder. Ultrasonics 66, 11–17 (2016)

    Google Scholar 

  39. Zhao, X., Qian, Z.H., Zhang, S.: Effect of initial stress on propagation behaviors of shear horizontal waves in piezoelectric/piezomagnetic layered cylinders. Ultrasonics 63, 47–53 (2015)

    Google Scholar 

  40. Hu, Y.F., Wang, B.: Solution of two-dimensional scattering problem in piezoelectric/piezomagnetic media using a polarization method. Appl. Math. Mech. Engl. Ed. 29(12), 1535–1552 (2008)

    MathSciNet  Google Scholar 

  41. Du, J.K., Shen, Y.P., Ye, D.Y.: Scattering of anti-plane shear waves by a partially debonded magneto-electro-elastic circular cylindrical inhomogeneity. Int. J. Eng. Sci. 42(8–9), 887–913 (2004)

    Google Scholar 

  42. Kuo, H.Y., Yu, S.H.: Effect of the imperfect interface on the scattering of SH wave in a piezoelectric cylinder in a piezomagnetic matrix. Int. J. Eng. Sci. 85, 186–202 (2014)

    Google Scholar 

  43. Hashemi, R.: Scattering of shear waves by a two-phase multiferroic sensor embedded in a piezoelectric/piezomagnetic medium. Smart Mater. Struct. 26(3), 035016 (2017)

    Google Scholar 

  44. Shodja, H.M., Ordookhani, A., Tehranchi, A.: Dynamic concentrations and potentials of embedded eccentrically coated magneto-electro-elastic fiber subjected to anti-plane shear waves. J. Elast. 153(1), 119–153 (2023)

    MathSciNet  Google Scholar 

  45. Qi, H., Fan, Z., Guo, J.: Anti-plane dynamics of right-angle rare earth giant magnetostrictive medium with cylindrical conducting inclusion. Appl. Math. Model. 123, 729–746 (2023)

    MathSciNet  Google Scholar 

  46. Liu, X., Zheng, X.: A nonlinear constitutive model for magnetostrictive materials. Acta Mech. Sin. Prc. 21(3), 278–285 (2005)

    Google Scholar 

  47. Gu, C., Jin, F.: Research on the tunability of point defect modes in a two-dimensional magneto-elastic phononic crystal. J. Phys. D Appl. Phys. 49(17), 175103 (2016)

    Google Scholar 

  48. Lei, F., Chen, Z., Gu, C., Ma, L., Gao, Y.: Propagation characteristics of Love waves in a layered piezomagnetic structure. Acta Mech. 234(10), 5101–5113 (2023)

    Google Scholar 

  49. Liu, J.X., Fang, D.N., Wei, W.Y., Zhao, X.F.: Love waves in layered piezoelectric/piezomagnetic structures. J. Sound Vib. 315(1–2), 146–156 (2008)

    Google Scholar 

  50. Chen, Z.X., Lei, F.M., Zhao, Y.G., Ma, L.S., Gu, C.L.: Effects of the external magnetic field on propagation of thickness-twist waves in inhomogeneous plates. Acta Mech. 234(2), 491–509 (2023)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiying Ou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: The matrix forms of Eq. (1)

The matrix forms of Eq. (1) are described as follows (using the engineering shear strain, i.e., γxy = 2εxy; \(G = \frac{E}{{2\left( {1 + \nu } \right)}}\)):

$$\begin{aligned} \left\{ \begin{gathered} \varepsilon _{x} \hfill \\ \varepsilon _{y} \hfill \\ \varepsilon _{z} \hfill \\ \gamma _{{yz}} \hfill \\ \gamma _{{zx}} \hfill \\ \gamma _{{xy}} \hfill \\ \end{gathered} \right\} & = \left[ {\begin{array}{*{20}c} {{1 \mathord{\left/ {\vphantom {1 E}} \right. \kern-\nulldelimiterspace} E}} & \quad {{{ - \nu } \mathord{\left/ {\vphantom {{ - \nu } E}} \right. \kern-\nulldelimiterspace} E}} & \quad {{{ - \nu } \mathord{\left/ {\vphantom {{ - \nu } E}} \right. \kern-\nulldelimiterspace} E}} & \quad 0 & \quad 0 & \quad 0 \\ {{{ - \nu } \mathord{\left/ {\vphantom {{ - \nu } E}} \right. \kern-\nulldelimiterspace} E}} & \quad {{1 \mathord{\left/ {\vphantom {1 E}} \right. \kern-\nulldelimiterspace} E}} & \quad {{{ - \nu } \mathord{\left/ {\vphantom {{ - \nu } E}} \right. \kern-\nulldelimiterspace} E}} & \quad 0 & \quad 0 & \quad 0 \\ {{{ - \nu } \mathord{\left/ {\vphantom {{ - \nu } E}} \right. \kern-\nulldelimiterspace} E}} & \quad {{{ - \nu } \mathord{\left/ {\vphantom {{ - \nu } E}} \right. \kern-\nulldelimiterspace} E}} & \quad {{1 \mathord{\left/ {\vphantom {1 E}} \right. \kern-\nulldelimiterspace} E}} & \quad 0 & \quad 0 & \quad 0 \\ 0 & \quad 0 & \quad 0 & \quad {{1 \mathord{\left/ {\vphantom {1 G}} \right. \kern-\nulldelimiterspace} G}} & \quad 0 & \quad 0 \\ 0 & \quad 0 & \quad 0 & \quad 0 & \quad {{1 \mathord{\left/ {\vphantom {1 G}} \right. \kern-\nulldelimiterspace} G}} & \quad 0 \\ 0 & \quad 0 & \quad 0 & \quad 0 & \quad 0 & \quad {{1 \mathord{\left/ {\vphantom {1 G}} \right. \kern-\nulldelimiterspace} G}} \\ \end{array} } \right]\left\{ \begin{gathered} \sigma _{x} \hfill \\ \sigma _{y} \hfill \\ \sigma _{z} \hfill \\ \tau _{{yz}} \hfill \\ \tau _{{zx}} \hfill \\ \tau _{{xy}} \hfill \\ \end{gathered} \right\} \\ & \quad + \frac{{\lambda _{s} }}{{M_{s}^{2} }}\left[ {\begin{array}{*{20}c} {1 - {{\tilde{\sigma }_{x} } \mathord{\left/ {\vphantom {{\tilde{\sigma }_{x} } {\sigma _{s} }}} \right. \kern-\nulldelimiterspace} {\sigma _{s} }}} & \quad { - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2} - {{\tilde{\sigma }_{x} } \mathord{\left/ {\vphantom {{\tilde{\sigma }_{x} } {\sigma _{s} }}} \right. \kern-\nulldelimiterspace} {\sigma _{s} }}} & \quad { - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2} - {{\tilde{\sigma }_{x} } \mathord{\left/ {\vphantom {{\tilde{\sigma }_{x} } {\sigma _{s} }}} \right. \kern-\nulldelimiterspace} {\sigma _{s} }}} & \quad 0 & \quad 0 & \quad 0 \\ { - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2} - {{\tilde{\sigma }_{y} } \mathord{\left/ {\vphantom {{\tilde{\sigma }_{y} } {\sigma _{s} }}} \right. \kern-\nulldelimiterspace} {\sigma _{s} }}} & \quad {1 - {{\tilde{\sigma }_{y} } \mathord{\left/ {\vphantom {{\tilde{\sigma }_{y} } {\sigma _{s} }}} \right. \kern-\nulldelimiterspace} {\sigma _{s} }}} & \quad { - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2} - {{\tilde{\sigma }_{y} } \mathord{\left/ {\vphantom {{\tilde{\sigma }_{y} } {\sigma _{s} }}} \right. \kern-\nulldelimiterspace} {\sigma _{s} }}} & \quad 0 & \quad 0 & \quad 0 \\ { - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2} - {{\tilde{\sigma }_{z} } \mathord{\left/ {\vphantom {{\tilde{\sigma }_{z} } {\sigma _{s} }}} \right. \kern-\nulldelimiterspace} {\sigma _{s} }}} & \quad { - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2} - {{\tilde{\sigma }_{z} } \mathord{\left/ {\vphantom {{\tilde{\sigma }_{z} } {\sigma _{s} }}} \right. \kern-\nulldelimiterspace} {\sigma _{s} }}} & \quad {1 - {{\tilde{\sigma }_{z} } \mathord{\left/ {\vphantom {{\tilde{\sigma }_{z} } {\sigma _{s} }}} \right. \kern-\nulldelimiterspace} {\sigma _{s} }}} & \quad 0 & \quad 0 & \quad 0 \\ { - {{2\tilde{\tau }_{{yz}} } \mathord{\left/ {\vphantom {{2\tilde{\tau }_{{yz}} } {\sigma _{s} }}} \right. \kern-\nulldelimiterspace} {\sigma _{s} }}} & \quad { - {{2\tilde{\tau }_{{yz}} } \mathord{\left/ {\vphantom {{2\tilde{\tau }_{{yz}} } {\sigma _{s} }}} \right. \kern-\nulldelimiterspace} {\sigma _{s} }}} & \quad { - {{2\tilde{\tau }_{{yz}} } \mathord{\left/ {\vphantom {{2\tilde{\tau }_{{yz}} } {\sigma _{s} }}} \right. \kern-\nulldelimiterspace} {\sigma _{s} }}} & \quad 3 & \quad 0 & \quad 0 \\ { - {{2\tilde{\tau }_{{zx}} } \mathord{\left/ {\vphantom {{2\tilde{\tau }_{{zx}} } {\sigma _{s} }}} \right. \kern-\nulldelimiterspace} {\sigma _{s} }}} & \quad { - {{2\tilde{\tau }_{{zx}} } \mathord{\left/ {\vphantom {{2\tilde{\tau }_{{zx}} } {\sigma _{s} }}} \right. \kern-\nulldelimiterspace} {\sigma _{s} }}} & \quad { - {{2\tilde{\tau }_{{zx}} } \mathord{\left/ {\vphantom {{2\tilde{\tau }_{{zx}} } {\sigma _{s} }}} \right. \kern-\nulldelimiterspace} {\sigma _{s} }}} & \quad 0 & \quad 3 & \quad 0 \\ { - {{2\tilde{\tau }_{{xy}} } \mathord{\left/ {\vphantom {{2\tilde{\tau }_{{xy}} } {\sigma _{s} }}} \right. \kern-\nulldelimiterspace} {\sigma _{s} }}} & \quad { - {{2\tilde{\tau }_{{xy}} } \mathord{\left/ {\vphantom {{2\tilde{\tau }_{{xy}} } {\sigma _{s} }}} \right. \kern-\nulldelimiterspace} {\sigma _{s} }}} & \quad { - {{2\tilde{\tau }_{{xy}} } \mathord{\left/ {\vphantom {{2\tilde{\tau }_{{xy}} } {\sigma _{s} }}} \right. \kern-\nulldelimiterspace} {\sigma _{s} }}} & \quad 0 & \quad 0 & \quad 3 \\ \end{array} } \right]\left\{ \begin{gathered} M_{x}^{2} \hfill \\ M_{y}^{2} \hfill \\ M_{z}^{2} \hfill \\ M_{y} M_{z} \hfill \\ M_{z} M_{x} \hfill \\ M_{x} M_{y} \hfill \\ \end{gathered} \right\}, \hfill \\ \end{aligned}$$
(A1)
$$\begin{aligned} \left\{ \begin{gathered} H_{x} \hfill \\ H_{y} \hfill \\ H_{z} \hfill \\ \end{gathered} \right\} &= \frac{1}{{\overline{k}M}}f^{ - 1} \left( {\frac{M}{{M_{s} }}} \right)\left[ {\begin{array}{*{20}c} 1 & \quad 0 & \quad 0 \\ 0 & \quad 1 & \quad 0 \\ 0 & \quad 0 & \quad 1 \\ \end{array} } \right]\left\{ \begin{gathered} M_{x} \hfill \\ M_{y} \hfill \\ M_{z} \hfill \\ \end{gathered} \right\}\\ & \quad - \frac{{\lambda_{s} }}{{\mu_{0} M_{s}^{2} }}\left[ {\begin{array}{*{20}c} {2\tilde{\sigma }_{x} - \frac{{{\text{I}}_{\sigma }^{2} - 3{\text{II}}_{\sigma } }}{{\sigma_{s} }}} & \quad {2\tilde{\tau }_{xy} } & \quad {2\tilde{\tau }_{zx} } \\ {2\tilde{\tau }_{xy} } & \quad {2\tilde{\sigma }_{y} - \frac{{{\text{I}}_{\sigma }^{2} - 3{\text{II}}_{\sigma } }}{{\sigma_{s} }}} & \quad {2\tilde{\tau }_{yz} } \\ {2\tilde{\tau }_{zx} } & \quad {2\tilde{\tau }_{yz} } & \quad {2\tilde{\sigma }_{z} - \frac{{{\text{I}}_{\sigma }^{2} - 3{\text{II}}_{\sigma } }}{{\sigma_{s} }}} \\ \end{array} } \right]\left\{ \begin{gathered} M_{x} \hfill \\ M_{y} \hfill \\ M_{z} \hfill \\ \end{gathered} \right\}. \hfill \\ \end{aligned}$$
(A2)

Appendix B: The effective material constants

The effective material constants of the piezomagnetic material can be expressed as follows: The effective material constants of the piezomagnetic material can be expressed as follows:

$$\begin{gathered} c_{ijgl} \left( {{\varvec{H}},{\varvec{\sigma}}} \right) = S_{{_{ijgl} }}^{ - 1} \left( {{\varvec{H}},{\varvec{\sigma}}} \right), \hfill \\ q_{mij} \left( {{\varvec{H}},{\varvec{\sigma}}} \right) = c_{ijgl} \left( {{\varvec{H}},{\varvec{\sigma}}} \right)\overline{q}_{mgl} \left( {{\varvec{H}},{\varvec{\sigma}}} \right), \hfill \\ \mu_{nm} \left( {{\varvec{H}},{\varvec{\sigma}}} \right) = \overline{\mu }_{nm} \left( {{\varvec{H}},{\varvec{\sigma}}} \right) - q_{ngl} \left( {{\varvec{H}},{\varvec{\sigma}}} \right)S_{ijgl} \left( {{\varvec{H}},{\varvec{\sigma}}} \right)q_{mij} \left( {{\varvec{H}},{\varvec{\sigma}}} \right), \hfill \\ \end{gathered}$$
(B1)

where

$$S_{11} = \frac{1}{E} - \frac{{\lambda_{s} M_{z}^{2} }}{{\sigma_{s} M_{s}^{2} }} + \frac{{\overline{k}\lambda_{s}^{2} \frac{{M_{z}^{2} }}{{M_{s}^{2} }}\left( {1 + \frac{{2\tilde{\sigma }_{x} }}{{\sigma_{s} }}} \right)^{2} }}{{\frac{{\mu_{0} M_{s} }}{{\frac{1}{{M_{3}^{2} }} - \csc {\text{h}}^{2} \left( {M_{3} } \right)}} - \overline{k}\lambda_{s} \left( {2\tilde{\sigma }_{z} - \frac{{{\text{I}}_{\sigma }^{2} - 3{\text{II}}_{\sigma } }}{{\sigma_{s} }}} \right)}},$$
(B2)
$$S_{12} = - \frac{v}{E} + \frac{{\lambda_{s} M_{z}^{2} }}{{2\sigma_{s} M_{s}^{2} }} + \frac{{\overline{k}\lambda_{s}^{2} \frac{{M_{z}^{2} }}{{M_{s}^{2} }}\left( {1 + \frac{{2\tilde{\sigma }_{x} }}{{\sigma_{s} }}} \right)\left( {1 + \frac{{2\tilde{\sigma }_{y} }}{{\sigma_{s} }}} \right)}}{{\frac{{\mu_{0} M_{s} }}{{\frac{1}{{M_{3}^{2} }} - \csc {\text{h}}^{2} \left( {M_{3} } \right)}} - \overline{k}\lambda_{s} \left( {2\tilde{\sigma }_{z} - \frac{{{\text{I}}_{\sigma }^{2} - 3{\text{II}}_{\sigma } }}{{\sigma_{s} }}} \right)}},$$
(B3)
$$S_{13} = - \frac{v}{E} + \frac{{\lambda_{s} M_{z}^{2} }}{{2\sigma_{s} M_{s}^{2} }} - \frac{{2\overline{k}\lambda_{s}^{2} \frac{{M_{z}^{2} }}{{M_{s}^{2} }}\left( {1 + \frac{{2\tilde{\sigma }_{x} }}{{\sigma_{s} }}} \right)\left( {1 - \frac{{\tilde{\sigma }_{z} }}{{\sigma_{s} }}} \right)}}{{\frac{{\mu_{0} M_{s} }}{{\frac{1}{{M_{3}^{2} }} - \csc {\text{h}}^{2} \left( {M_{3} } \right)}} - \overline{k}\lambda_{s} \left( {2\tilde{\sigma }_{z} - \frac{{{\text{I}}_{\sigma }^{2} - 3{\text{II}}_{\sigma } }}{{\sigma_{s} }}} \right)}},$$
(B4)
$$S_{22} = \frac{1}{E} - \frac{{\lambda_{s} M_{z}^{2} }}{{\sigma_{s} M_{s}^{2} }} + \frac{{\overline{k}\lambda_{s}^{2} \frac{{M_{z}^{2} }}{{M_{s}^{2} }}\left( {1 + \frac{{2\tilde{\sigma }_{y} }}{{\sigma_{s} }}} \right)^{2} }}{{\frac{{\mu_{0} M_{s} }}{{\frac{1}{{M_{3}^{2} }} - \csc {\text{h}}^{2} \left( {M_{3} } \right)}} - \overline{k}\lambda_{s} \left( {2\tilde{\sigma }_{z} - \frac{{{\text{I}}_{\sigma }^{2} - 3{\text{II}}_{\sigma } }}{{\sigma_{s} }}} \right)}},$$
(B5)
$$S_{23} = - \frac{v}{E} + \frac{{\lambda_{s} M_{z}^{2} }}{{2\sigma_{s} M_{s}^{2} }} - \frac{{2\overline{k}\lambda_{s}^{2} \frac{{M_{z}^{2} }}{{M_{s}^{2} }}\left( {1 + \frac{{2\tilde{\sigma }_{y} }}{{\sigma_{s} }}} \right)\left( {1 - \frac{{\tilde{\sigma }_{z} }}{{\sigma_{s} }}} \right)}}{{\frac{{\mu_{0} M_{s} }}{{\frac{1}{{M_{3}^{2} }} - \csc {\text{h}}^{2} \left( {M_{3} } \right)}} - \overline{k}\lambda_{s} \left( {2\tilde{\sigma }_{z} - \frac{{{\text{I}}_{\sigma }^{2} - 3{\text{II}}_{\sigma } }}{{\sigma_{s} }}} \right)}},$$
(B6)
$$S_{33} = \frac{1}{E} - \frac{{\lambda_{s} M_{z}^{2} }}{{\sigma_{s} M_{s}^{2} }} + \frac{{4\overline{k}\lambda_{s}^{2} \frac{{M_{z}^{2} }}{{M_{s}^{2} }}\left( {1 - \frac{{\tilde{\sigma }_{z} }}{{\sigma_{s} }}} \right)^{2} }}{{\frac{{\mu_{0} M_{s} }}{{\frac{1}{{M_{3}^{2} }} - \csc {\text{h}}^{2} \left( {M_{3} } \right)}} - \overline{k}\lambda_{s} \left( {2\tilde{\sigma }_{z} - \frac{{{\text{I}}_{\sigma }^{2} - 3{\text{II}}_{\sigma } }}{{\sigma_{s} }}} \right)}},$$
(B7)
$$S_{44} = \frac{1}{G} - \frac{{3\lambda_{s} M_{z}^{2} }}{{\sigma_{s} M_{s}^{2} }} + \frac{{9\overline{k}\lambda_{s}^{2} \frac{{M_{z}^{2} }}{{M_{s}^{2} }}}}{{3\mu_{0} M_{s} - \overline{k}\lambda_{s} \left( {2\tilde{\sigma }_{y} - \frac{{{\text{I}}_{\sigma }^{2} - 3{\text{II}}_{\sigma } }}{{\sigma_{s} }}} \right)}},$$
(B8)
$$S_{55} = \frac{1}{G} - \frac{{3\lambda_{s} M_{z}^{2} }}{{\sigma_{s} M_{s}^{2} }} + \frac{{9\overline{k}\lambda_{s}^{2} \frac{{M_{z}^{2} }}{{M_{s}^{2} }}}}{{3\mu_{0} M_{s} - \overline{k}\lambda_{s} \left( {2\tilde{\sigma }_{x} - \frac{{{\text{I}}_{\sigma }^{2} - 3{\text{II}}_{\sigma } }}{{\sigma_{s} }}} \right)}},$$
(B9)
$$S_{66} = \frac{1}{G} - \frac{{3\lambda_{s} M_{z}^{2} }}{{\sigma_{s} M_{s}^{2} }},$$
(B10)
$$\overline{q}_{31} = - \frac{{\overline{k}\mu_{0} \lambda_{s} M_{z} \left( {1 + \frac{{2\tilde{\sigma }_{x} }}{{\sigma_{s} }}} \right)}}{{\frac{{\mu_{0} M_{s} }}{{\frac{1}{{M_{3}^{2} }} - \csc {\text{h}}^{2} \left( {M_{3} } \right)}} - \overline{k}\lambda_{s} \left( {2\tilde{\sigma }_{z} - \frac{{{\text{I}}_{\sigma }^{2} - 3{\text{II}}_{\sigma } }}{{\sigma_{s} }}} \right)}},$$
(B11)
$$\overline{q}_{32} = - \frac{{\overline{k}\mu_{0} \lambda_{s} M_{z} \left( {1 + \frac{{2\tilde{\sigma }_{y} }}{{\sigma_{s} }}} \right)}}{{\frac{{\mu_{0} M_{s} }}{{\frac{1}{{M_{3}^{2} }} - \csc {\text{h}}^{2} \left( {M_{3} } \right)}} - \overline{k}\lambda_{s} \left( {2\tilde{\sigma }_{z} - \frac{{{\text{I}}_{\sigma }^{2} - 3{\text{II}}_{\sigma } }}{{\sigma_{s} }}} \right)}},$$
(B12)
$$\overline{q}_{33} = \frac{{2\overline{k}\mu_{0} \lambda_{s} M_{z} \left( {1 - \frac{{\tilde{\sigma }_{z} }}{{\sigma_{s} }}} \right)}}{{\frac{{\mu_{0} M_{s} }}{{\frac{1}{{M_{3}^{2} }} - \csc {\text{h}}^{2} \left( {M_{3} } \right)}} - \overline{k}\lambda_{s} \left( {2\tilde{\sigma }_{z} - \frac{{{\text{I}}_{\sigma }^{2} - 3{\text{II}}_{\sigma } }}{{\sigma_{s} }}} \right)}},$$
(B13)
$$\overline{q}_{24} = \frac{{3\overline{k}\mu_{0} \lambda_{s} M_{z} }}{{3\mu_{0} M_{s} - \overline{k}\lambda_{s} \left( {2\tilde{\sigma }_{y} - \frac{{{\text{I}}_{\sigma }^{2} - 3{\text{II}}_{\sigma } }}{{\sigma_{s} }}} \right)}},$$
(B14)
$$\overline{q}_{15} = \frac{{3\overline{k}\mu_{0} \lambda_{s} M_{z} }}{{3\mu_{0} M_{s} - \overline{k}\lambda_{s} \left( {2\tilde{\sigma }_{x} - \frac{{{\text{I}}_{\sigma }^{2} - 3{\text{II}}_{\sigma } }}{{\sigma_{s} }}} \right)}},$$
(B15)
$$\overline{\mu }_{11} = \mu_{0} + \frac{{\overline{k}\mu_{0}^{2} M_{s}^{2} }}{{3\mu_{0} M_{s} - \overline{k}\lambda_{s} \left( {2\tilde{\sigma }_{x} - \frac{{{\text{I}}_{\sigma }^{2} - 3{\text{II}}_{\sigma } }}{{\sigma_{s} }}} \right)}},$$
(B16)
$$\overline{\mu }_{22} = \mu_{0} + \frac{{\overline{k}\mu_{0}^{2} M_{s}^{2} }}{{3\mu_{0} M_{s} - \overline{k}\lambda_{s} \left( {2\tilde{\sigma }_{y} - \frac{{{\text{I}}_{\sigma }^{2} - 3{\text{II}}_{\sigma } }}{{\sigma_{s} }}} \right)}},$$
(B17)
$$\overline{\mu }_{33} = \mu_{0} + \frac{{\overline{k}\mu_{0}^{2} M_{s}^{2} }}{{\frac{{\mu_{0} M_{s} }}{{\frac{1}{{M_{3}^{2} }} - \csc {\text{h}}^{2} \left( {M_{3} } \right)}} - \overline{k}\lambda_{s} \left( {2\tilde{\sigma }_{z} - \frac{{{\text{I}}_{\sigma }^{2} - 3{\text{II}}_{\sigma } }}{{\sigma_{s} }}} \right)}},$$
(B18)

with \(M_{z} = M_{s} \left( {\coth M_{3} - \frac{1}{{M_{3} }}} \right)\) and \(M_{3} = \overline{k}H_{z} + \frac{{\overline{k}\lambda_{s} M_{z} }}{{\mu_{0} M_{s}^{2} }}\left( {2\tilde{\sigma }_{z} - \frac{{{\text{I}}_{\sigma }^{2} - 3{\text{II}}_{\sigma } }}{{\sigma_{s} }}} \right)\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, M., Gu, C., Lei, D. et al. Scattering of shear horizontal waves by the piezomagnetic material cylinder embedded in an elastic medium. Acta Mech 235, 2513–2532 (2024). https://doi.org/10.1007/s00707-024-03885-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-024-03885-3

Navigation