Skip to main content
Log in

Effects of grain size distributions on scattering attenuation of elastic waves in polycrystalline materials

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The propagation characteristics of elastic waves in polycrystalline materials depend not only on grain size, but also on grain size distribution. In this paper, based on Weaver's polycrystalline scattering model, two grain size distribution models, namely the truncated lognormal distribution and the fractal distribution based on fractal dimension, are considered. At the same time, the ultrasonic attenuation of polycrystalline materials is studied by considering the existence of finite interval of grain size. The grain size of the classical lognormal distribution ranges from zero to infinity, which is inconsistent with the actual situation. The present work modifies Turner's study based on the lognormal distribution and compares the numerical results with Turner's. The numerical results obtained from the two kinds of distributions show that the scattering attenuation in the Rayleigh scattering region is affected by both the grain size distribution and the average grain size. In the transition scattering region, the attenuation of P-wave scattering is related to the average grain size and size distribution, while the attenuation of S-wave scattering is mainly affected by the average grain size. In the stochastic scattering region, the scattering attenuation is mainly affected by the average grain size and is not sensitive to the grain size distribution. Moreover, the numerical results also show that the difference of scattering attenuation due to the grain size distribution is most obvious in the Rayleigh scattering region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Achenbach J. Wave propagation in elastic solids[M]. Elseviver, (2012).

  2. Papadakis, E.P. 5. Scattering in polycrystalline media. In Methods in Experimental Physics (Vol. 19, pp. 237-298). Academic Press. (1981)

  3. Li, J., Rokhlin, S.I.: Propagation and scattering of ultrasonic waves in polycrystals with arbitrary crystallite and macroscopic texture symmetries[J]. Wave Motion 58, 145–164 (2015)

    Article  MathSciNet  Google Scholar 

  4. Kube, C.M.: Iterative solution to bulk wave propagation in polycrystalline materials[J]. J. Acoustical Soc. America 141(3), 1804–1811 (2017)

    Article  Google Scholar 

  5. Weaver, R.L.: Diffusivity of ultrasound in polycrystals[J]. J. Mech. Phys. Solids 38(1), 55–86 (1990)

    Article  MathSciNet  Google Scholar 

  6. Frisch, U.: Wave propagation in random media[J]. Prob. Methods Appl. Math. 1, 75–198 (1968)

    MathSciNet  Google Scholar 

  7. Mason, W.P., McSkimin, H.J.: Attenuation and scattering of high frequency sound waves in metals and glasses[J]. The Journal of the Acoustical Society of America 19(3), 464–473 (1947)

    Article  Google Scholar 

  8. Stanke, F.E., Kino, G.S.: A unified theory for elastic wave propagation in polycrystalline materials[J]. J. Acoustical Soc. America 75(3), 665–681 (1984)

    Article  Google Scholar 

  9. Karal, F.C., Jr., Keller, J.B.: Elastic, electromagnetic, and other waves in a random medium[J]. J. Math. Phys. 5(4), 537–547 (1964)

    Article  MathSciNet  Google Scholar 

  10. Arguelles, A.P., Tuener, J.A.: Ultrasonic attenuation of polycrystalline materials with a distribution of grain sizes[J]. The Journal of the Acoustical Society of America 141(6), 4347–4353 (2017)

    Article  Google Scholar 

  11. Smith, R.L.: The effect of grain size distribution on the frequency dependence of the ultrasonic attenuation in polycrystalline materials[J]. Ultrasonics 20(5), 211–214 (1982)

    Article  Google Scholar 

  12. Nicoletti, D., Anderson, A.: Determination of grain-size distribution from ultrasonic attenuation: transformation and inversion[J]. J. Acoustical Soc. America 101(2), 686–689 (1997)

    Article  Google Scholar 

  13. Nicoletti, D., Bilgutay, N., Onaral, B.: Power-law relationships between the dependence of ultrasonic attenuation on wavelength and the grain size distribution[J]. J. Acoustical Soc. America 91(6), 3278–3284 (1992)

    Article  Google Scholar 

  14. Rokhlin, S.I., Li, J., Sha, G.: Far-field scattering model for wave propagation in random media[J]. J. Acoustical Soc. America 137(5), 2655–2669 (2015)

    Article  Google Scholar 

  15. Yang, L., Lobkis, O.I., Rokhlin, S.I.: Shape effect of elongated grains on ultrasonic attenuation in polycrystalline materials[J]. Ultrasonics 51(6), 697–708 (2011)

    Article  Google Scholar 

  16. Feder J. Fractals[M]. Plenum Press. (1988).

  17. Mandelbrot, B.B., Wheeler, J.A.: The fractal geometry of nature[J]. Am. J. Phys. 51(3), 286–287 (1983)

    Article  Google Scholar 

  18. Yu, B.M., Li, J.H.: Some fractal characters of porous media[J]. Fractals 09, 365–372 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12072022, 11872105 and 11911530176) and the Fundamental Research Funds for the Central Universities (FRF-BR-18-008B, FRF-TW-2018-005).

Funding

National Natural Science Foundation of China, 12072022, Peijun Wei, 11872105, Peijun Wei, 11911530176, Peijun Wei, Fundamental Research Funds for the Central Universities, FRF-BR-18-008B, Peijun Wei, FRF-TW-2018-005, Peijun Wei.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peijun Wei.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, P., Wang, C. Effects of grain size distributions on scattering attenuation of elastic waves in polycrystalline materials. Acta Mech 235, 3231–3244 (2024). https://doi.org/10.1007/s00707-024-03880-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-024-03880-8

Navigation