Skip to main content
Log in

Model reduction-based Bayesian updating of non-classically damped systems using modal data from multiple setups

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper presents a Bayesian method for updating linear dynamical systems using complex modal data due to the effects of non-classical damping collected from multiple setups. The practical scenario of the availability of a limited number of sensors is avoided by considering measurements from multiple setups. Besides, the complex modal data is assumed to consist of the most probable values (MPVs) of the modal parameters and their posterior uncertainties, unlike the other approaches where only MPVs of the modal parameters are considered. System modal parameters are introduced as additional uncertain parameters to avoid the requirement of mode matching between the model-predicted and the measured modes. Since introducing the system mode shapes as additional parameters increases the problem dimensionality, the dynamic condensation technique is employed to reduce the finite element (FE) model to a smaller model with fewer degrees of freedom (DOFs) corresponding to the measured DOFs. Detailed formulation leading to the development of the posterior probability density function (PDF) is presented based on the current framework. Transitional Markov chain Monte Carlo (TMCMC) and Metropolis-within-Gibbs (MWG) sampling methodologies are used to approximate the posterior PDF. The effectiveness and efficiency of the proposed methodology are demonstrated using two numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data, models, and code generated or used during the study appear in the published article.

References

  1. Hemez, F.M., Doebling, S.W.: Review and assessment of model updating for non-linear, transient dynamics. Mech. Syst. Signal Process. 15, 45–74 (2001). https://doi.org/10.1006/mssp.2000.1351

    Article  Google Scholar 

  2. Mottershead, J.E., Friswell, M.I.: Model updating in structural dynamics: A survey. J. Sound Vib. 167, 347–375 (1993). https://doi.org/10.1006/jsvi.1993.1340

    Article  Google Scholar 

  3. Jensen, H.A., Millas, E., Kusanovic, D., Papadimitriou, C.: Model-reduction techniques for Bayesian finite element model updating using dynamic response data. Comput. Methods Appl. Mech. Eng. 279, 301–324 (2014). https://doi.org/10.1016/j.cma.2014.06.032

    Article  MathSciNet  Google Scholar 

  4. Patelli, E., Govers, Y., Broggi, M., Gomes, H.M., Link, M., Mottershead, J.E.: Sensitivity or Bayesian model updating: a comparison of techniques using the DLR AIRMOD test data. Arch. Appl. Mech. 87, 905–925 (2017). https://doi.org/10.1007/s00419-017-1233-1

    Article  Google Scholar 

  5. Ni, P., Li, J., Hao, H., Han, Q., Du, X.: Probabilistic model updating via variational Bayesian inference and adaptive Gaussian process modeling. Comput. Methods Appl. Mech. Eng. 383, (2021). https://doi.org/10.1016/j.cma.2021.113915.

  6. Ewins, D.J.: Adjustment or updating of models. Sadhana - Acad. Proc. Eng. Sci. 25, 235–245 (2000). https://doi.org/10.1007/BF02703542

    Article  Google Scholar 

  7. Hofmeister, B., Bruns, M., Rolfes, R.: Finite element model updating using deterministic optimisation: A global pattern search approach. Eng. Struct. 195, 373–381 (2019). https://doi.org/10.1016/j.engstruct.2019.05.047

    Article  Google Scholar 

  8. Jiménez-Alonso, J.F., Naranjo-Perez, J., Pavic, A., Sáez, A.: Maximum Likelihood Finite-Element Model Updating of Civil Engineering Structures Using Nature-Inspired Computational Algorithms. Struct. Eng. Int. 1–13 (2020). https://doi.org/10.1080/10168664.2020.1768812.

  9. Simoen, E., De Roeck, G., Lombaert, G.: Dealing with uncertainty in model updating for damage assessment: A review. Mech. Syst. Signal Process. 56, 123–149 (2015). https://doi.org/10.1016/j.ymssp.2014.11.001

    Article  Google Scholar 

  10. Huang, Y., Shao, C., Wu, B., Beck, J.L., Li, H.: State-of-the-art review on Bayesian inference in structural system identification and damage assessment. Adv. Struct. Eng. 22, 1329–1351 (2019). https://doi.org/10.1177/1369433218811540

    Article  Google Scholar 

  11. Hızal, Ç., Turan, G.: A two-stage Bayesian algorithm for finite element model updating by using ambient response data from multiple measurement setups. J. Sound Vib. 469, (2020). https://doi.org/10.1016/j.jsv.2019.115139.

  12. Yan, W.J., Katafygiotis, L.S.: A novel Bayesian approach for structural model updating utilizing statistical modal information from multiple setups. Struct. Saf. 52, 260–271 (2015). https://doi.org/10.1016/j.strusafe.2014.06.004

    Article  Google Scholar 

  13. Zhang, E.L., Feissel, P., Antoni, J.: A comprehensive Bayesian approach for model updating and quantification of modeling errors. Probabilistic Eng. Mech. 26, 550–560 (2011). https://doi.org/10.1016/j.probengmech.2011.07.001

    Article  Google Scholar 

  14. Beck, J.L., Katafyglotis, L.S.: Updating Models and Their Uncertainties. I: Bayesian Statistical Framework. J. Eng. Mech. 124, 455 (1998). https://doi.org/10.1061/(ASCE)0733-9399(1998)124:4(455).

  15. Katafygiotis, L.S., Beck, J.L.: Updating models and their uncertaintiesi: Bayesian statistical framework. J. Eng. Mech. 124, 463–467 (1998)

    Article  Google Scholar 

  16. Esfandiari, A., Bakhtiari-Nejad, F., Rahai, A., Sanayei, M.: Structural model updating using frequency response function and quasi-linear sensitivity equation. J. Sound Vib. 326, 557–573 (2009). https://doi.org/10.1016/j.jsv.2009.07.001

    Article  Google Scholar 

  17. Cong, S., James Hu, S.-L., Li, H.-J.: Model updating methods using complex eigenvalues: sensitivity-based versus cross-model cross-mode. J. Eng. Mech. 147, (2021). https://doi.org/10.1061/(asce)em.1943-7889.0001903.

  18. Kuok, S.C., Yuen, K.V.: Structural health monitoring of Canton Tower using Bayesian framework. Smart Struct. Syst. 10, 375–391 (2012). https://doi.org/10.12989/sss.2012.10.4_5.375.

  19. Yuen, K.V., Beck, J.L., Katafygiotis, L.S.: Efficient model updating and health monitoring methodology using incomplete modal data without mode matching (2006). https://doi.org/10.1002/stc.144

    Article  Google Scholar 

  20. Li, B., Au, S.K.: An expectation-maximization algorithm for Bayesian operational modal analysis with multiple (possibly close) modes. Mech. Syst. Signal Process. 132, 490–511 (2019). https://doi.org/10.1016/j.ymssp.2019.06.036

    Article  Google Scholar 

  21. Beck, J.L., Au, S.-K.: Bayesian Updating of structural models and reliability using Markov chain monte Carlo simulation. J. Eng. Mech. 128, 380–391 (2002). https://doi.org/10.1061/(asce)0733-9399(2002)128:4(380)

    Article  Google Scholar 

  22. Ching, J., Muto, M., Beck, J.L.: Structural model updating and health monitoring with incomplete modal data using Gibbs sampler. Comput. Civ. Infrastruct. Eng. 21, 242–257 (2006). https://doi.org/10.1111/j.1467-8667.2006.00432.x

    Article  Google Scholar 

  23. Ching, J., Chen, Y.-C.: Transitional markov chain monte carlo method for Bayesian model updating, model class selection, and Model Averaging. https://doi.org/10.1061/ASCE0733-93992007133:7816.

  24. Betz, W., Papaioannou, I., Straub, D.: Transitional markov chain monte Carlo: observations and improvements. J. Eng. Mech. 142, 04016016 (2016). https://doi.org/10.1061/(asce)em.1943-7889.0001066

    Article  Google Scholar 

  25. Argyris, C., Papadimitriou, C., Panetsos, P., Tsopela, P.: Bayesian model-updating using features of modal data: Application to the Metsovo bridge. J. Sens. Actuator Networks. 9, (2020). https://doi.org/10.3390/JSAN9020027.

  26. Cheung, S.H., Beck, J.L.: Bayesian Model Updating Using Hybrid Monte Carlo Simulation with Application to Structural Dynamic Models with Many Uncertain Parameters. J. Eng. Mech. 135, 243–255 (2009). https://doi.org/10.1061/(ASCE)0733-9399(2009)135:4(243)

    Article  Google Scholar 

  27. Boulkaibet, I., Mthembu, L., Marwala, T., Friswell, M.I., Adhikari, S.: Finite element model updating using the shadow hybrid Monte Carlo technique. Mech. Syst. Signal Process. 52–53, 115–132 (2015). https://doi.org/10.1016/j.ymssp.2014.06.005

    Article  Google Scholar 

  28. Yang, J.H., Lam, H.F., Beck, J.L.: Bayes-Mode-ID: a Bayesian modal-component-sampling method for operational modal analysis. Eng. Struct. 189, 222–240 (2019). https://doi.org/10.1016/j.engstruct.2019.03.047

    Article  Google Scholar 

  29. Au, S., Zhang, F., Ni, Y.: Bayesian operational modal analysis : Theory, computation, practice. Comput. Struct. 126, 3–14 (2013). https://doi.org/10.1016/j.compstruc.2012.12.015

    Article  Google Scholar 

  30. Au, S.K., Zhang, F.L.: Fast Bayesian ambient modal identification incorporating multiple setups. J. Eng. Mech. 138, 800–815 (2012). https://doi.org/10.1061/(asce)em.1943-7889.0000385

    Article  Google Scholar 

  31. Brincker, R., Zhang, L., Andersen, P.: Modal identification of output-only systems using frequency domain decomposition. Smart Mater. Struct. 10, 441–445 (2001). https://doi.org/10.1088/0964-1726/10/3/303

    Article  Google Scholar 

  32. Christodoulou, K., Ntotsios, E., Papadimitriou, C., Panetsos, P.: Structural model updating and prediction variability using Pareto optimal models. Comput. Methods Appl. Mech. Eng. 198, 138–149 (2008). https://doi.org/10.1016/j.cma.2008.04.010

    Article  Google Scholar 

  33. Asadollahi, P., Huang, Y., Li, J.: Bayesian finite element model updating and assessment of cable-stayed bridges using wireless sensor data. Sensors (Switzerland). 18, (2018). https://doi.org/10.3390/s18093057.

  34. Sun, H., Büyüköztürk, O.: Probabilistic updating of building models using incomplete modal data. Mech. Syst. Signal Process. 75, 27–40 (2016). https://doi.org/10.1016/j.ymssp.2015.12.024

    Article  Google Scholar 

  35. Yin, T., Jiang, Q.H., Yuen, K.V.: Vibration-based damage detection for structural connections using incomplete modal data by Bayesian approach and model reduction technique. Eng. Struct. 132, 260–277 (2017). https://doi.org/10.1016/j.engstruct.2016.11.035

    Article  Google Scholar 

  36. Bansal, S.: A new Gibbs sampling based Bayesian model updating approach using modal data from multiple setups. Int. J. Uncertain. Quantif. 5, 361–374 (2015). https://doi.org/10.1615/Int.J.UncertaintyQuantification.2015013581

    Article  Google Scholar 

  37. Das, A., Debnath, N.: Gibbs sampling for damage detection using complex modal data from multiple setups. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civ. Eng. 7, 04021018 (2021). https://doi.org/10.1061/ajrua6.0001135.

  38. Bansal, S.: Bayesian model updating using modal data based on dynamic condensation. J. Eng. Mech. 146, 04019123 (2020). https://doi.org/10.1061/(asce)em.1943-7889.0001714

    Article  Google Scholar 

  39. Conte, J.P., He, X., Moaveni, B., Masri, S.F., Caffrey, J.P., Wahbeh, M., Tasbihgoo, F., Whang, D.H., Elgamal, A.: Dynamic testing of alfred zampa memorial bridge. J. Struct. Eng. 134, 1006–1015 (2008). https://doi.org/10.1061/(asce)0733-9445(2008)134:6(1006)

    Article  Google Scholar 

  40. Bajrić, A., Høgsberg, J.: Identification of damping and complex modes in structural vibrations. J. Sound Vib. 431, 367–389 (2018). https://doi.org/10.1016/j.jsv.2018.05.048

    Article  Google Scholar 

  41. Wang, X., Zhu, Z., Au, S.K.: Bayesian operational modal analysis of structures with tuned mass damper. Mech. Syst. Signal Process. 182, (2023). https://doi.org/10.1016/j.ymssp.2022.109511.

  42. Halevi, Y., Kenigsbuch, R.: Model updating of the complex modeshapes and the damping matrix. Inverse Probl. Eng. 8, 143–162 (2000). https://doi.org/10.1080/174159700088027724

    Article  Google Scholar 

  43. Li, H., Liu, F., Hu, S.L.J.: Employing incomplete complex modes for model updating and damage detection of damped structures. Sci. China, Ser. E Technol. Sci. 51, 2254–2268 (2008). https://doi.org/10.1007/s11431-008-0247-x.

  44. Cheung, S.H., Bansal, S.: A new Gibbs sampling based algorithm for Bayesian model updating with incomplete complex modal data. Mech. Syst. Signal Process. 92, 156–172 (2017). https://doi.org/10.1016/j.ymssp.2017.01.015

    Article  Google Scholar 

  45. Henikish, E.K., Das, A., Bansal, S.: On the Bayesian model updating based on model reduction using complex modal data for damage detection. J. Sound Vib. 556, 117712 (2023). https://doi.org/10.1016/j.jsv.2023.117712

    Article  Google Scholar 

  46. Zhang, F.L., Ni, Y.C., Lam, H.F.: Bayesian structural model updating using ambient vibration data collected by multiple setups. Struct. Control Heal. Monit. 24, (2017). https://doi.org/10.1002/stc.2023.

  47. Caughey, T.K.: Classical normal modes in damped linear dynamic systems. 9–11 (1960).

  48. Qu, Z.Q., Jung, Y., Selvam, R.P.: Model condensation for non-classically damped systems-Part I: static condensation. Mech. Syst. Signal Process. 17, 1003–1016 (2003). https://doi.org/10.1006/mssp.2002.1526

    Article  Google Scholar 

  49. Bansal, S., Cheung, S.H.: Stochastic sampling based Bayesian model updating with incomplete modal data. Int. J. Uncertain. Quantif. 6, 229–244 (2016). https://doi.org/10.1615/Int.J.UncertaintyQuantification.2016017194

    Article  MathSciNet  Google Scholar 

  50. Das, A., Debnath, N.: A Bayesian model updating with incomplete complex modal data (2020). https://doi.org/10.1016/j.ymssp.2019.106524

    Article  Google Scholar 

  51. JAYNEs, E.T.: Information Theory and. Statistical Mechanics. II. P 8YSICAL Rev. 108, (1957).

  52. Au, S.K., Zhang, F.L.: Fundamental two-stage formulation for Bayesian system identification, Part I: General theory. Mech. Syst. Signal Process. 66–67, 31–42 (2016). https://doi.org/10.1016/j.ymssp.2015.04.025

    Article  Google Scholar 

  53. Mousavi, A., Monsefi, R., Elvira, V.: Hamiltonian adaptive importance sampling. IEEE Signal Process. Lett. (2021). https://doi.org/10.1109/LSP.2021.3068616

    Article  Google Scholar 

  54. Yang, J.H., Lam, H.F.: An efficient adaptive sequential Monte Carlo method for Bayesian model updating and damage detection. Struct. Control Heal. Monit. 25, 6–11 (2018). https://doi.org/10.1002/stc.2260

    Article  Google Scholar 

  55. Yang, J.N., Lei, Y., Pan, S., Huang, N.: System identification of linear structures based on Hilbert-Huang spectral analysis. Part 1: Normal modes. Earthq. Eng. Struct. Dyn. 32, 1443–1467 (2003). https://doi.org/10.1002/eqe.287.

  56. Roger G. Ghanem, P.D.S.: Stochastic finite elements: a spectral approach. Springer New York, NY, New York (1991). https://doi.org/10.1007/978-1-4612-3094-6.

  57. Hoang, T.D., Takano, N.: First-order perturbation-based stochastic homogenization method applied to microscopic damage prediction for composite materials. Acta Mech. 230, 1061–1076 (2019). https://doi.org/10.1007/s00707-018-2337-6

    Article  MathSciNet  Google Scholar 

  58. Kamiński, M., Corigliano, A.: Numerical solution of the Duffing equation with random coefficients. Meccanica 50, 1841–1853 (2015). https://doi.org/10.1007/s11012-015-0133-0

    Article  MathSciNet  Google Scholar 

  59. Khodaparast, H.H., Mottershead, J.E., Friswell, M.I.: Perturbation methods for the estimation of parameter variability in stochastic model updating. Mech. Syst. Signal Process. 22, 1751–1773 (2008). https://doi.org/10.1016/j.ymssp.2008.03.001

    Article  Google Scholar 

  60. Amoussou, C.P.D., Lei, H., Alhaddad, W., Halabi, Y.: Simplified modeling and analysis method for skyscrapers with outrigger system. Structures. 33, 1033–1050 (2021). https://doi.org/10.1016/j.istruc.2021.04.096

    Article  Google Scholar 

Download references

Acknowledgements

The first author gratefully acknowledges the University of Diyala, Iraq, scholarship provided for conducting this research. The authors would also like to gratefully acknowledge the Start-up Research Grant received from the Science and Engineering Research Board, Government of India, and the Grant-in-aid scheme received from Aeronautics R&D Board, Government of India.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahil Bansal.

Ethics declarations

Conflict of interest

The authors report that there are no competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: development of the marginal PDF \(p({{\varvec{\uptheta}}},{{\varvec{\upzeta}}},{{\varvec{\upomega}}}|D)\)

The number of uncertain parameters in the posterior PDF \(p({{\varvec{\uptheta}}},{{\varvec{\upzeta}}},{{\varvec{\upomega}}},{{\varvec{\Psi}}}|D)\) in Eq. (35) \(n_{{\theta_{s} }} + 4N_{r} + \sum\nolimits_{s = 1}^{{N_{s} }} {\sum\nolimits_{s = 1}^{{N_{s} }} {n_{m}^{s} N_{r} } }\) is large. Hence, in this appendix section, an alternative approach is developed to estimate the marginal PDF \(p({{\varvec{\uptheta}}},{{\varvec{\upzeta}}},{{\varvec{\upomega}}}|D)\) by integrating out \({{\varvec{\Psi}}}\) from the posterior PDF \(p({{\varvec{\uptheta}}},{{\varvec{\upzeta}}},{{\varvec{\upomega}}},{{\varvec{\Psi}}}|D)\) in Eq. (35). This leads to a problem with the number of uncertain parameters equal to \(n_{{\theta_{s} }} + 4N_{r}\) which is much lesser than \(n_{{\theta_{s} }} + 4N_{r} + \sum\nolimits_{s = 1}^{{N_{s} }} {\sum\nolimits_{s = 1}^{{N_{s} }} {n_{m}^{s} N_{r} } }\). Applying the theorem of total probability to integrate out \({{\varvec{\Psi}}}\) in Eq. (35) gives:

$$p({{\varvec{\uptheta}}},{{\varvec{\upzeta}}},{{\varvec{\upomega}}}|D) = cp({{\varvec{\uptheta}}})p_{0} ({{\varvec{\upomega}}}|D)p_{0} ({{\varvec{\upzeta}}}|D)\prod\nolimits_{r} {I(\omega_{r} ,\zeta_{r} ,{{\varvec{\uptheta}}},D)}$$
(45)

where the integral \(I_{r} \equiv I(\omega_{r} ,\zeta_{r} ,{{\varvec{\uptheta}}},D) = \prod\nolimits_{s} {\int {p_{0} ({{\varvec{\Psi}}}_{r,s} |D)p(\omega_{r} ,\zeta_{r} ,{{\varvec{\Psi}}}_{r,s} |{{\varvec{\uptheta}}})d{{\varvec{\Psi}}}_{r,s} } }\) is solved as follows:

$$\begin{aligned} I_{r} = \prod\limits_{s} \left| {2\pi {\hat{\mathbf{C}}}_{{{{\varvec{\Phi}}},r,s}} } \right|^{{ - \frac{1}{2}}} \left| {2\pi {\mathbf{C}}_{e,r,s} } \right|^{{ - \frac{1}{2}}}\\ \int {\exp \left( { - \frac{1}{2}\left( {{{\varvec{\Psi}}}_{r,s}^{T} {\mathbf{Q}}_{r,s} {{\varvec{\Psi}}}_{r,s} - {\hat{\varvec{\Psi }}}_{r,s}^{T} {\hat{\mathbf{C}}}_{{{{\varvec{\Phi}}},r,s}}^{ - 1} {{\varvec{\Psi}}}_{r,s} - {{\varvec{\Psi}}}_{r,s}^{T} {\hat{\mathbf{C}}}_{{{{\varvec{\Phi}}},r,s}}^{ - 1} {\hat{\varvec{\Psi }}}_{r,s} + {\hat{\varvec{\Psi }}}_{r,s} {\hat{\mathbf{C}}}_{{{{\varvec{\Phi}}},r,s}}^{ - 1} {\hat{\varvec{\Psi }}}_{r,s} } \right)} \right)d{{\varvec{\Psi}}}_{r,s} } \end{aligned}$$
(46)

and where \({\mathbf{Q}}_{r,s} = {\hat{\mathbf{C}}}_{{{{\varvec{\Phi}}},r,s}}^{ - 1} + {\mathbf{X}}_{r,s}^{T} {\mathbf{C}}_{e,r,s}^{ - 1} {\mathbf{X}}_{r,s}\). By completing the squares for vector \({{\varvec{\Psi}}}_{r,s}\) and for symmetric invertible matrix \({\mathbf{Q}}_{r,s}\), we have the expression as:

$$I_{r} = \prod\limits_{s} {\left[ \begin{gathered} \left| {2\pi {\hat{\mathbf{C}}}_{{{{\varvec{\Phi}}},r,s}} } \right|^{{ - \frac{1}{2}}} \left| {2\pi {\mathbf{C}}_{e,r,s} } \right|^{{ - \frac{1}{2}}} \exp \left( {\frac{1}{2}\left( {{\mathbf{a}}_{r,s}^{T} {\mathbf{Q}}_{r,s}^{ - 1} {\mathbf{a}}_{r,s} - {\hat{\boldsymbol{\Psi }}}_{r,s}^{T} {\hat{\mathbf{C}}}_{{{{\varvec{\Phi}}},r,s}}^{ - 1} {\hat{\boldsymbol{\Psi }}}_{r,s} } \right)} \right) \hfill \\ \int {\exp \left( { - \frac{1}{2}({{\varvec{\Psi}}}_{r,s} - {\mathbf{Q}}_{r,s}^{ - 1} {\mathbf{a}}_{r,s} )^{T} {\mathbf{Q}}_{r,s} ({{\varvec{\Psi}}}_{r,s} - {\mathbf{Q}}_{r,s}^{ - 1} {\mathbf{a}}_{r,s} )} \right)d{{\varvec{\Psi}}}_{r,s} } \hfill \\ \end{gathered} \right]}$$
(47)

where \({\mathbf{a}}_{r,s} = {\hat{\mathbf{C}}}_{{{{\varvec{\upphi}}},r,s}}^{ - 1} {\hat{\mathbf{\Psi }}}_{r,s}\). The integral in the above equation is Aitken's integral that is solved to yield:

$$\,I_{r} \, = \prod\limits_{s} {\left| {2\pi {\hat{\mathbf{C}}}_{{{{\varvec{\upphi}}},r,s}} } \right|^{{ - \frac{1}{2}}} \left| {2\pi {\mathbf{C}}_{e,r,s} } \right|^{{ - \frac{1}{2}}} \exp \left( {\frac{1}{2}\left( {{\mathbf{a}}_{r,s}^{T} {\mathbf{Q}}_{r,s}^{ - 1} {\mathbf{a}}_{r,s} - {\hat{\mathbf{\Psi }}}_{r,s}^{T} {\hat{\mathbf{C}}}_{{{{\varvec{\upphi}}},r,s}}^{ - 1} {\hat{\mathbf{\Psi }}}_{r,s}^{T} } \right)} \right)\left| {2\pi {\mathbf{Q}}_{r,s}^{ - 1} } \right|^{\frac{1}{2}} } .$$
(48)

Further, using the identity \((A + UBV)^{ - 1} = A^{ - 1} - A^{ - 1} U(B^{ - 1} + VA^{ - 1} U)^{ - 1} VA^{ - 1}\) to solve for \({\mathbf{Q}}_{r}^{ - 1}\) gives:

$$I_{r} = \prod\limits_{s} {\left| {2\pi {{\varvec{\Xi}}}_{r,s} } \right|^{{ - \frac{1}{2}}} \exp \left( { - \frac{1}{2}{\hat{\mathbf{\Psi }}}_{r,s}^{T} {\mathbf{X}}_{r,s}^{T} {{\varvec{\Xi}}}_{r,s}^{ - 1} {\mathbf{X}}_{r,s} {\hat{\mathbf{\Psi }}}_{r,s} } \right)}$$
(49)

where \({{\varvec{\Xi}}}_{r,s} = {\mathbf{C}}_{e,r,s} + {\mathbf{X}}_{r,s} {\hat{\mathbf{C}}}_{{{{\varvec{\Phi}}},r,s}} {\mathbf{X}}_{r,s}^{T}\). By substituting Ir back into Eq. (49), it finally gives:

$$p({{\varvec{\uptheta}}},{{\varvec{\upomega}}},{{\varvec{\upzeta}}}|D) = cp({{\varvec{\uptheta}}})p_{0} ({{\varvec{\upomega}}}|D)p_{0} ({{\varvec{\upzeta}}}|D)\left( {\prod\limits_{r} {\prod\limits_{s} {\left| {2\pi {{\varvec{\Xi}}}_{r,s} } \right|^{{ - \frac{1}{2}}} } } } \right)\exp \left( { - \frac{1}{2}\sum\limits_{r} {\sum\limits_{s} {{\hat{\mathbf{\Psi }}}_{r,s}^{T} {\mathbf{X}}_{r,s}^{T} {{\varvec{\Xi}}}_{r,s}^{ - 1} {\mathbf{X}}_{r,s} {\hat{\mathbf{\Psi }}}_{r,s} } } } \right).$$
(50)

Appendix B: story stiffness and mass and TMD properties of Example 2

See Table 18.

Table 18 Story stiffness, mass and TMD properties of the 80 DOF system

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henikish, E.K., Bansal, S. Model reduction-based Bayesian updating of non-classically damped systems using modal data from multiple setups. Acta Mech 235, 2259–2287 (2024). https://doi.org/10.1007/s00707-023-03819-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03819-5

Navigation