Skip to main content
Log in

A multi-stage descent algorithm for discrete and continuous optimization applied to truss structures optimal design

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper the step by step descent algorithm is extended to continuous optimization problems and applied to the optimal sizing of truss structures. The step by step descent method, recently developed, was applied to the discrete optimization of rigid structures. To solve continuous problems, a multi-stage optimization algorithm is proposed, which involves implementing the step by step descent method in multiple stages. In each stage, the continuous areas of the variables are progressively divided into a finite number of points. The algorithm is based on the search for the steepest gradient descent direction that minimizes the cost function and employs a wise heuristic approach to bypassing local optima. To evaluate the algorithm's performance, a study was carried out on ten mathematical and four truss optimization problems. For unconstrained mathematical problems, the algorithm demonstrates quick converges to optimum solution from any starting point. For truss structures, the starting design point is selected based on structural knowledge to enhance convergence speed. The obtained results surpass those achieved by other state-of-the-art optimization algorithms, affirming the efficiency, robustness and the promptness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing, Boston (1989)

    MATH  Google Scholar 

  2. Wu, S.J., Chow, P.T.: Genetic algorithms for nonlinear mixed discrete-integer optimization problems via meta-genetic parameter optimization. Engrg. Optim. 24, 137–159 (1995). https://doi.org/10.1080/03052159508941187

    Article  Google Scholar 

  3. Wan, W., Birch, J.B.: An improved hybrid genetic algorithm with a new local search procedure. J. Appl. Math. (2013). https://doi.org/10.1155/2013/103591

    Article  MathSciNet  Google Scholar 

  4. Van Laarhoven, P.J.M., Aarts, E.H.L.: Simulated Annealing: Theory and Applications. Kluwer Academic Publishers, Dordrecht (1998)

    MATH  Google Scholar 

  5. Hasançebi, O., Erbatur, F.: On efficient use of simulated annealing in complex structural optimization problems. Acta Mech. 157, 27–50 (2002). https://doi.org/10.1007/bf01182153

    Article  MATH  Google Scholar 

  6. Wang, Y.J.: Derivative-free simulated annealing and deflecting function technique for global optimization. J. Appl. Math. Comput. 26, 49–66 (2008). https://doi.org/10.1007/s12190-007-0010-7

    Article  MathSciNet  MATH  Google Scholar 

  7. Cenk, T., Serkan, S., Oguzhan, H.: Optimum design of steel lattice transmission line towers using simulated annealing and PLS-TOWER. Comput. Struct. 179, 75–94 (2017). https://doi.org/10.1016/j.compstruc.2016.10.017

    Article  Google Scholar 

  8. Eberhart R.C., Kennedy J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, MHS’95. pp. 39–43 (1995)

  9. Nezhad, A.M., Mahlooji, H.: A revised particle swarm optimization based discrete Lagrange multipliers method for non linear programming problems. Comput. Oper. Res. 38, 1164–1174 (2011). https://doi.org/10.1016/j.cor.2010.11.007

    Article  MathSciNet  MATH  Google Scholar 

  10. Lee, K.S., Geem, Z.W.: A new metaheuristic algorithm for continuous engineering optimization: harmony search theory and practice. Comput. Methods Appl. Mech. Energ. 194, 3902–3933 (2005). https://doi.org/10.1016/j.cma.2004.09.007

    Article  MATH  Google Scholar 

  11. Cao, H., Chen, Y., Zhou, Y., Liu, S., Qin, S.: Comparative study of four penalty-free constraint-handling techniques in structural optimization using harmony search. Eng. Comput. 38, 561–581 (2022). https://doi.org/10.1007/s00366-020-01162-0

    Article  Google Scholar 

  12. Wu, Z.Y., Li, D., Zhang, L.S.: Global descent methods for unconstrained global optimization. J. Glob. Optim. 50, 379–396 (2011). https://doi.org/10.1007/s10898-010-9587-8

    Article  MathSciNet  MATH  Google Scholar 

  13. Hansen, E., Walster, G.W.: Global Optimization Using Interval Analysis. Dekker, New York (2003)

    Book  MATH  Google Scholar 

  14. Levy, A., Montalvo, A.: The tunneling algorithm for the global minimization of functions. SIAM J. Sci. Stat. Comput. 6, 15–29 (1985). https://doi.org/10.1137/0906002

    Article  MathSciNet  MATH  Google Scholar 

  15. Alexander, Y.G., Tatiana, S.Z.: Tunneling algorithm for solving nonconvex optimal control problems. Optim. Simul. Control (2013). https://doi.org/10.1007/978-1-4614-5131-0_18

    Article  MATH  Google Scholar 

  16. El-Gindy, T.M., Salim, M.S., Ahmed, A.I.: A new filled function method applied to unconstrained global optimization. Appl. Math. Comput. 273, 1246–1256 (2016). https://doi.org/10.1016/j.amc.2015.08.091

    Article  MathSciNet  MATH  Google Scholar 

  17. Ge, R.P.: A filled function method for finding a global minimizer of a function of several variables. Math. Program. 46, 191–204 (1990). https://doi.org/10.1007/bf01585737

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhang, Y., Xu, Y., Qiu, Q., He, X.: A filled function method for minimizing control variation in constrained discrete-time optimal control problems. J. Comput. Appl. Math. 326, 126–137 (2017). https://doi.org/10.1016/j.cam.2017.05.023

    Article  MathSciNet  MATH  Google Scholar 

  19. Bernal D., Ovalle D., Liñán D., Ricardez-Sandoval L., Gómez J., Grossmann I: Process superstructure optimization through discrete steepest descent optimization: a GDP analysis and applications in process intensification. In: Computer Aided Chemical Engineering (2022). https://doi.org/10.1016/B978-0-323-85159-6.50213-X

  20. Liu, H., Wang, Y., Guan, S., Liu, X.: A new filled function method for unconstrained global optimization. Int. J. Comput. Math. 94, 1–14 (2017). https://doi.org/10.1080/00207160.2017.1283021

    Article  MathSciNet  MATH  Google Scholar 

  21. Dehghan, N.T., Shahzadeh Fazeli, S.A., Heydari, M.: A two-step improved Newton method to solve convex unconstrained optimization problems. J. Appl. Math. Comput. 62, 37–53 (2019). https://doi.org/10.1007/s12190-019-01272-z

    Article  MathSciNet  MATH  Google Scholar 

  22. Sellami, M.: Optimum design of planar steel frames under LRFD-AISC specifications using a step-by-step descent algorithm. Struct. Multidiscip. Optim. 65, 1–17 (2022). https://doi.org/10.1007/s00158-022-03264-3

    Article  Google Scholar 

  23. Kaveh, A., Zaerreza, A.: Optimum design of the frame structures using the force method and three recently improved metaheuristic algorithms. Int. J. Optim. Civ. Eng. 13, 309–325 (2023)

    Google Scholar 

  24. Kaveh, A., Malakoutirad, S.: Hybrid genetic algorithm and particle swarm optimization for the force method-based simultaneous analysis and design. Iran. J. Sci. Technol. Trans. B Eng. 34, 15–34 (2010)

    Google Scholar 

  25. Kaveh, A.: Improved cycle bases for the flexibility analysis of structures. Comput. Methods Appl. Mech. Eng. 9, 267–272 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ahmed, A.I.: A new filled function for global minimization and system of nonlinear equations. Optimization (2021). https://doi.org/10.1080/02331934.2021.1935936

    Article  Google Scholar 

  27. Gao, Y., Yang, Y., You, M.: A new filled function method for global optimization. Appl. Math. Comput. 268, 685–695 (2015). https://doi.org/10.1016/j.amc.2015.06.090

    Article  MathSciNet  MATH  Google Scholar 

  28. Fatehi, M., Toloei, A., Niaki, S.T.A., Zio, E.: An advanced teaching-learning-based algorithm to solve unconstrained optimization problems. Intell. Syst. Appl. (2023). https://doi.org/10.1016/j.iswa.2022.200163

    Article  Google Scholar 

  29. Noack, M.M., Funke, S.W.: Hybrid genetic deflated Newton method for global optimization. J. Comput. Appl. Math. 325, 97–112 (2017). https://doi.org/10.1016/j.cam.2017.04.047

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, L.J., Huang, Z.B., Liu, F.: A heuristic particle swarm optimization method for truss structures with discrete variables. Comput. Struct. 87, 435–443 (2009). https://doi.org/10.1016/j.compstruc.2009.01.004

    Article  Google Scholar 

  31. Zhang, Y.N., Liu, J.P., Liu, B., Zhu, C.Y., Li, Y.: Application of improved hybrid genetic algorithm to optimized design of architecture structures. J. South China Univ. Technol. 33, 69–72 (2003)

    Google Scholar 

  32. Sabour, M.H., Eskandar, H., Salehi, P.: Imperialist competitive ant colony algorithm for truss structures. World Appl. Sci. J. 12, 94–105 (2011)

    Google Scholar 

  33. Dede, T.: Application of teaching-learning-based-optimization algorithm for the discrete optimization of truss structures. KSCE J. Civ. Eng. 18, 1759–1767 (2014). https://doi.org/10.1007/s12205-014-0553-8

    Article  Google Scholar 

  34. Cheng, M.Y., Prayogo, D., Wu, Y.W., Lukito, M.M.: A Hybrid Harmony Search algorithm for discrete sizing optimization of truss structure. Autom. Constr. 69, 21–33 (2016). https://doi.org/10.1016/j.autcon.2016.05.023

    Article  Google Scholar 

  35. Soh, C.K., Yang, J.: Fuzzy controlled genetic algorithm search for shape optimization. J. Comput. Civil Eng. 10, 143–150 (1996)

    Article  Google Scholar 

  36. Lee, K.S., Geem, Z.W.: A new structural optimization method based on the harmony search algorithm. Comput. Struct. 82, 781–798 (2004). https://doi.org/10.1016/j.compstruc.2004.01.002

    Article  Google Scholar 

  37. Kaveh, A., Talatahari, S.: Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures. Comput. Struct. 87, 267–283 (2009). https://doi.org/10.1016/j.compstruc.2010.06.011

    Article  Google Scholar 

  38. Kaveh, A., Khayatazad, M.: Ray optimization for size and shape optimization of truss structures. Comput. Struct. 117, 82–94 (2013). https://doi.org/10.1016/j.compstruc.2012.12.010

    Article  Google Scholar 

  39. Kaveh, A., Mirzaei, B., Jafarvand, A.: An improved magnetic charged system search for optimization of truss structures with continuous and discrete variables. Appl. Soft Comput. 28, 400–410 (2015). https://doi.org/10.1016/j.asoc.2014.11.056

    Article  Google Scholar 

  40. Kaveh, A.: Advances in Metaheuristic Algorithms for Optimal Design of Structures, 3rd edn. Springer International Publishing, Cham (2021)

    Book  MATH  Google Scholar 

  41. Baghlani, A., Makiabadi, M.H., Maheri, M.R.: Sizing optimization of truss structures by an efficient constraint-handling strategy in TLBO. J. Comput. Civ. Eng. ASCE. (2017). https://doi.org/10.1061/(ASCE)CP.1943-5487.0000642

    Article  Google Scholar 

  42. Kazemzadeh, A.S., Hasanc, O.: An elitist self-adaptive step-size search for structural design optimization. Appl. Soft Comput. 19, 226–235 (2014). https://doi.org/10.1016/j.asoc.2014.02.017

    Article  Google Scholar 

  43. Kaveh, A., Dadras, A., Montazeran, A.H.: Chaotic enhanced colliding bodies algorithms for size optimization. Acta Mech. (2018). https://doi.org/10.1007/s00707-018-2149-8

    Article  MathSciNet  MATH  Google Scholar 

  44. American Institute of Steel Construction (AISC): Manual of Steel Construction-Allowable Stress Design. 9th ed., Chicago (1989)

  45. Saka, M.P.: Optimum design of pin-jointed steel structures with practical applications. J. Struct. Eng. ASCE 116, 2599–2620 (1990). https://doi.org/10.1061/(ASCE)0733-9445(1990)116:10(2599)

    Article  Google Scholar 

  46. Vanderplaats, G.N., Moses, F.: Structural optimization by methods of feasible directions. Comput. Struct. 3, 739–755 (1973). https://doi.org/10.1016/0045-7949(73)90055-2

    Article  Google Scholar 

  47. Farshi, B., Ziazi, A.: Sizing optimization of truss structures by method of centers and force formulation. Int. J. Solids Struct. 47, 2508–2524 (2010). https://doi.org/10.1016/j.ijsolstr.2010.05.009

    Article  MATH  Google Scholar 

  48. Najian Asl R., Aslani M., Panahi M.S.: Sizing Optimization of Truss Structures using a Hybridized Genetic Algorithm. arXiv preprint https://arxiv.org/abs/1306.1454 (2016).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Sellami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

  • 1. Two-dimensional Rastrigin function

\(\begin{gathered} {\text{min}}\;f\left( {x_{1} , \, x_{2} } \right)\, = \,x_{1}^{2} \, + \,x_{2}^{2} - cos(18x_{1} ) - cos(18x_{2} ) \hfill \\ s.t. - 2\, \le \,x_{i} \, \le \,2,\;i\, = \,1, \, 2. \hfill \\ f^{*} \, = \, - 2\;{\text{at }}\left( {0, \, 0} \right) \hfill \\ \end{gathered}\)

  • 2. Two-dimensional Six-Hump Camel-back

\(\begin{gathered} {\text{min}}f\left( {x_{1} , \, x_{2} } \right)\, = \,{4}x_{1}^{{2}} - {2}.{1}x_{1}^{{4}} \, + \,x_{1}^{{6}} /{3}\, + \,x_{1} x_{2} - {4}x_{2}^{{2}} \, + \,{4}x_{2}^{{4}} \hfill \\ {\text{s}}.{\text{t}}. \, - {3}\, \le \,x_{i} \, \le \,{3},\;i\, = \,{1},{2}. \hfill \\ f^{*} \, = \, - {1}.0{\text{316284534 at }}\left( {0.0{898422}, \, - 0.{7126566}} \right){\text{ and }}( - 0.0{898422}, \, 0.{7126566}) \hfill \\ \end{gathered}\)

  • 3. Treccani function

  • \(\begin{gathered} {\text{min}}\;f(x_{1} ,x_{2} )\, = \,x_{1}^{{4}} \, + \,{4}x_{1}^{{2}} \, + \,{4}x_{1}^{{2}} \, + \,x_{2}^{{2}} \hfill \\ {\text{s}}.{\text{t}}. \, - {3}\, \le \,x_{1} \, \le \,{3}\;{\text{and}}\, - \,{3}\, \le \,x_{2} \, \le \,{3}. \hfill \\ f^{*} \, = \,0{\text{ at }}\left( { - {2}, \, 0} \right){\text{ and }}(0,0) \hfill \\ \end{gathered}\)

  • 4. Two-dimensional Shubert II function

    min f(x1, x2) = \(\left(\sum_{i=1}^{5}i\mathrm{ cos}\left[\left(i + 1\right){\mathrm{x}}_{ 1}+ i \right]\right)\left(\sum_{i=1}^{5}i\mathrm{ cos}\left[\left(i + 1\right){\mathrm{x}}_{ 2} + i\right]\right)\)

    s.t. 0 ≤ xi ≤ 10, i = 1, 2.

    f* = − 186.730907998

  • 5. n-dimensional Sine-square II function

    min f(X) = \(\frac{\uppi }{\mathrm{n}}\Bigg\{10{\mathrm{sin}}^{2}\left(\pi {y}_{1}\right)+ {\left({y}_{n}- 1\right)}^{2}+{\sum }_{\mathrm{i}=1}^{\mathrm{n}-1}\Bigg[{({y}_{i} - 1)}^{2}(1 + 10{\mathrm{sin}}^{2}(\pi {y}_{i}+1)\Bigg]\Bigg\}\)

    s.t. yi = 1 + (xi − 1)/4 and − 10 ≤ xi ≤ 10, i = 1, 2,..., n.

    f* = 0 at xi.* = 1

  • 6. n-dimensional Rastrigin function

    min f(X) = 10n + \(\sum_{i=1}^{n}\left[{x}_{ i}^{2}-10 cos(2\pi {x}_{i})\right]\)

    s.t. − 5.12 ≤ xi ≤ 5.12, i = 1,…,n..

    f* = 0 at xi.* = 0

  • 7. Branin function

    min f (x1, x2) = (x2 − 1.275 x122 + 5x1 − 6)2 + 10(1 − 0.125) cos x1 + 10,

    s.t. − 5 ≤ x1 ≤ 15, − 5 ≤ x2 ≤ 15.

    f* = 0.397887 at (-π, 12.275), (π, 2.275) and (9.42478, 2.475),

  • 8. Eason and Fenton’s gear train inertia function

    min f (x1, x2) = \(\left\{12+{x}_{1}^{2}+ \frac{1+{x}_{2}^{2}}{{x}_{1}^{2}} + \frac{{x}_{1}^{2}{x}_{2}^{2}+100 }{{({x}_{1}{x}_{2})}^{4}}\right\}\left(\frac{1}{10}\right)\)

    s.t. 0 < xi ≤ 10, i = 1, 2..

    f* = 1.74 at (1.7435, 2.0297)

  • 9. Wood function

    min f(X) = 100(10x2 − x12)2 + (1 − x4)2 + 90(x4 − x32)2 + (1 − x3)2 + 10.1[(x2 − 1)2 + (x4 − 1)2] + 19.8(x2 − 1)(x4 − 1)

    s.t. − 5 ≤ xi ≤ 5, i = 1,…, 4. 

    f* = 0 at xi* = 1

  • 10. Ackley’s function

    min f(X) = − 20 exp \(\left(\sqrt[-0.2]{\frac{1}{n}\sum_{i=1}^{n}{x}_{ i}^{2}}\right)\)-exp \(\left(\frac{1}{n}\sum_{i=1}^{n}cos(2\pi {x}_{i})\right)\)+20 + exp(1)

    s.t. − 10 ≤ xi ≤ 10, i = 1, 2,..., n.f* = 0 at \({x}_{i}^{*}\)=0

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sellami, M. A multi-stage descent algorithm for discrete and continuous optimization applied to truss structures optimal design. Acta Mech 234, 4837–4857 (2023). https://doi.org/10.1007/s00707-023-03630-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03630-2

Navigation