Skip to main content
Log in

Combination of mean-field micromechanics and cycle jump technique for cyclic response of PA66/GF composites with viscoelastic–viscoplastic and damage mechanisms

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

An accelerated micromechanics framework based on the extended Mori–Tanaka transformation field analysis (TFA) and cycle jump technique is proposed to predict the homogenized response of short glass fiber-reinforced polyamide 66 composites (PA66/GF) under a large number of loading cycles (> 100,000 cycles). The extended theory accounts for microscopic viscoelastic–viscoplastic and damage mechanisms, and realistic microstructures induced by the injection molding process. Toward this end, a number of training cycles are first conducted using the extended Mori–Tanaka TFA to obtain the global evolution functions of material state-dependent variables (SDVs) for each phase. These SDVs are extrapolated linearly to a certain jump length with the help of global evolution functions such that direct numerical simulation of the cycles during this interval can be skipped, leading to a large computational cost reduction. After the cycle jump, a set of complete cycles are performed based on the extrapolated SDVs using the Mori–Tanaka TFA simulation to re-establish the global evolution functions. The implementation of the cycle jump procedure is facilitated by introducing an extrapolation control function to allow adaptive jump size control as well as to minimize the extrapolating error. The capabilities of the extended theory with the cycle jump technique have been validated extensively vis-à-vis cycle-by-cycle benchmark calculations under various loading conditions. It has been further verified with the experimental results of actual PA66/GF composites under high-cycle loading beyond which the cycle-by-cycle simulations can achieve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermomechanical composites. Comput. Mech. 69, 1087–1113 (2022)

    MathSciNet  MATH  Google Scholar 

  2. Dinzart, F., Torres-Costa, L.M., Sabar, H.: New micromechanical model in time domain for linear viscoelastic composites with ellipsoidal reinforcements. Acta Mech. 233, 2009–2029 (2022)

    MathSciNet  MATH  Google Scholar 

  3. Görthofer, J., Schneider, M., Hrymak, A., Böhlke, T.: A computational multiscale model for anisotropic failure of sheet molding compound composites. Compos. Struct. 288, 115322 (2022)

    Google Scholar 

  4. Santharam, P., Marco, Y., Le Saux, V., Le Saux, M., Robert, G., Raoult, I., et al.: Fatigue criteria for short fiber-reinforced thermoplastic validated over various fiber orientations, load ratios and environmental conditions. Int. J. Fatigue 135, 105574 (2020)

    Google Scholar 

  5. Arif, M.F., Saintier, N., Meraghni, F., Fitoussi, J., Chemisky, Y., Robert, G.: Multiscale fatigue damage characterization in short glass fiber reinforced polyamide-66. Compos. B Eng. 61, 55–65 (2014)

    Google Scholar 

  6. Tu, W., Chen, Q.: Evolution of interfacial debonding of a unidirectional graphite/polyimide composite under off-axis loading. Eng. Fract. Mech. 230, 106947 (2020)

    Google Scholar 

  7. Russo, A., Riccio, A., Sellitto, A.: A robust cumulative damage approach for the simulation of delamination under cyclic loading conditions. Compos. Struct. 281, 114998 (2022)

    Google Scholar 

  8. Bian, L., Cheng, Y., Taheri, F.: Elasto-plastic analysis of critical fracture stress and fatigue fracture prediction. Acta Mech. 225, 3059–3072 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Qin, D.-W., Ju, J.W., Zhang, K.-S., Li, Z.-S.: Inhomogeneous deformation growth of a metal under cyclic loading and its influence on fatigue. Acta Mech. 231, 701–713 (2020)

    Google Scholar 

  10. Chen, Q., Chatzigeorgiou, G., Robert, G., Meraghni, F.: Viscoelastic-viscoplastic homogenization of short glass-fiber reinforced polyamide composites (PA66/GF) with progressive interphase and matrix damage: New developments and experimental validation. Mech. Mater. 164, 104081 (2022)

    Google Scholar 

  11. Hessman, P.A., Riedel, T., Welschinger, F., Hornberger, K., Böhlke, T.: Microstructural analysis of short glass fiber reinforced thermoplastics based on x-ray micro-computed tomography. Compos. Sci. Technol. 183, 107752 (2019)

    Google Scholar 

  12. Arif, M.F., Meraghni, F., Chemisky, Y., Despringre, N., Robert, G.: In situ damage mechanisms investigation of PA66/GF30 composite: effect of relative humidity. Compos. B Eng. 58, 487–495 (2014)

    Google Scholar 

  13. Pindera, M.-J., Khatam, H., Drago, A.S., Bansal, Y.: Micromechanics of spatially uniform heterogeneous media: a critical review and emerging approaches. Compos. B Eng. 40, 349–378 (2009)

    Google Scholar 

  14. Saeb, S., Steinmann, P., Javili, A.: Aspects of computational homogenization at finite deformations: a unifying review from Reuss’ to Voigt’s bound. Appl. Mech. Rev. 68, 050801 (2016)

    Google Scholar 

  15. Chen, Q., Wang, G., Pindera, M.-J.: Homogenization and localization of nanoporous composites—a critical review and new developments. Compos. B Eng. 155, 329–368 (2018)

    Google Scholar 

  16. He, Z.: Finite volume based asymptotic homogenization of viscoelastic unidirectional composites. Compos. Struct. 291, 115601 (2022)

    Google Scholar 

  17. Schneider, M.: A review of nonlinear FFT-based computational homogenization methods. Acta Mech. 232, 2051–2100 (2021)

    MathSciNet  MATH  Google Scholar 

  18. Zhi, J., Poh, L.H., Tay, T.-E., Tan, V.B.C.: Direct FE2 modeling of heterogeneous materials with a micromorphic computational homogenization framework. Comput. Methods Appl. Mech. Eng. 393, 114837 (2022)

    MATH  Google Scholar 

  19. Chen, Q., Chatzigeorgiou, G., Meraghni, F., Javili, A.: Homogenization of size-dependent multiphysics behavior of nanostructured piezoelectric composites with energetic surfaces. Eur. J. Mech. A. Solids 96, 104731 (2022)

    MathSciNet  MATH  Google Scholar 

  20. Chen, Q., Wang, G., Chen, X., Geng, J.: Finite-volume homogenization of elastic/viscoelastic periodic materials. Compos. Struct. 182, 457–470 (2017)

    Google Scholar 

  21. He, Z., Pindera, M.-J.: Finite volume based asymptotic homogenization theory for periodic materials under anti-plane shear. Eur. J. Mech. A. Solids 85, 104122 (2021)

    MathSciNet  MATH  Google Scholar 

  22. Chen, Q., Pindera, M.-J.: Homogenization and localization of elastic-plastic nanoporous materials with Gurtin-Murdoch interfaces: an assessment of computational approaches. Int. J. Plast 124, 42–70 (2020)

    Google Scholar 

  23. Hessman, P.A., Welschinger, F., Hornberger, K., Böhlke, T.: On mean field homogenization schemes for short fiber reinforced composites: unified formulation, application and benchmark. Int. J. Solids Struct. 230–231, 111141 (2021)

    Google Scholar 

  24. Barral, M., Chatzigeorgiou, G., Meraghni, F., Léon, R.: Homogenization using modified Mori–Tanaka and TFA framework for elastoplastic-viscoelastic–viscoplastic composites: theory and numerical validation. Int. J. Plast 127, 102632 (2020)

    Google Scholar 

  25. Haddad, M., Doghri, I., Pierard, O.: Viscoelastic-viscoplastic polymer composites: development and evaluation of two very dissimilar mean-field homogenization models. Int. J. Solids Struct. 236–237, 111354 (2022)

    Google Scholar 

  26. Chen, Q., Chatzigeorgiou, G., Meraghni, F.: Extended mean-field homogenization of viscoelastic–viscoplastic polymer composites undergoing hybrid progressive degradation induced by interface debonding and matrix ductile damage. Int. J. Solids Struct. 210–211, 1–17 (2021)

    Google Scholar 

  27. Praud, F., Chatzigeorgiou, G., Bikard, J., Meraghni, F.: Phenomenological multi-mechanisms constitutive modelling for thermoplastic polymers, implicit implementation and experimental validation. Mech. Mater. 114, 9–29 (2017)

    Google Scholar 

  28. Troshchenko, V., Yasnii, P., Pokrovskii, V.: Calculation of fatigue and life of crack-bearing structural elements under cyclic load. Strength Mater. 14, 1434–1439 (1982)

    Google Scholar 

  29. Lesne, P.-M., Savalle, S.: An efficient cycles jump technique for viscoplastic structure calculations involving large number of cycles. ONERA, TP no 1989–138. 1989:13.

  30. Abdul-Latif, A., Razafindramary, D., Rakotoarisoa, J.C.: New hybrid cycle jump approach for predicting low-cycle fatigue behavior by a micromechanical model with the damage induced anisotropy concept. Int. J. Mech. Sci. 160, 397–411 (2019)

    Google Scholar 

  31. Loew, P.J., Poh, L.H., Peters, B., Beex, L.A.A.: Accelerating fatigue simulations of a phase-field damage model for rubber. Comput. Methods Appl. Mech. Eng. 370, 113247 (2020)

    MathSciNet  MATH  Google Scholar 

  32. Titscher, T., Unger, J.F.: Efficient higher-order cycle jump integration of a continuum fatigue damage model. Int. J. Fatigue 141, 105863 (2020)

    Google Scholar 

  33. Cojocaru, D., Karlsson, A.M.: A simple numerical method of cycle jumps for cyclically loaded structures. Int. J. Fatigue 28, 1677–1689 (2006)

    Google Scholar 

  34. Van Paepegem, W., Degrieck, J., De Baets, P.: Finite element approach for modelling fatigue damage in fibre-reinforced composite materials. Compos. B Eng. 32, 575–588 (2001)

    Google Scholar 

  35. Van Paepegem, W., Degrieck, J.: Fatigue degradation modelling of plain woven glass/epoxy composites. Compos. A Appl. Sci. Manuf. 32, 1433–1441 (2001)

    Google Scholar 

  36. Fish, J., Bailakanavar, M., Powers, L., Cook, T.: Multiscale fatigue life prediction model for heterogeneous materials. Int. J. Numer. Meth. Eng. 91, 1087–1104 (2012)

    MathSciNet  Google Scholar 

  37. Lüders, C., Sinapius, M., Krause, D.: Adaptive cycle jump and limits of degradation in micromechanical fatigue simulations of fibre-reinforced plastics. Int. J. Damage Mech. 28, 1523–1555 (2019)

    Google Scholar 

  38. Sally, O., Laurin, F., Julien, C., Desmorat, R., Bouillon, F.: An efficient computational strategy of cycle-jumps dedicated to fatigue of composite structures. Int. J. Fatigue 135, 105500 (2020)

    Google Scholar 

  39. Dvorak, G.J.: Transformation field analysis of inelastic composite materials. Proc. R. Soc. Lond. A 437, 311–327 (1992)

    MathSciNet  MATH  Google Scholar 

  40. Dvorak, G.J., Benveniste, Y.: On transformation strains and uniform fields in multiphase elastic media. Proc. R. Soc. Lond. A 437, 291–310 (1992)

    MathSciNet  MATH  Google Scholar 

  41. Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A 241, 376–396 (1957)

    MathSciNet  MATH  Google Scholar 

  42. Mura, T.: Mechanics of Elastic and Inelastic Solids. Micromechanics of Defects in Solids. Martinus Nijhoff Publishers, Dordrecht (1987)

    Google Scholar 

  43. Gavazzi, A., Lagoudas, D.: On the numerical evaluation of Eshelby’s tensor and its application to elastoplastic fibrous composites. Comput. Mech. 7, 13–19 (1990)

    Google Scholar 

  44. Lemaitre, J., Chaboche, J.-L.: Mechanics of Solid Materials. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  45. Praud, F., Chatzigeorgiou, G., Chemisky, Y., Meraghni, F.: Hybrid micromechanical-phenomenological modelling of anisotropic damage and anelasticity induced by micro-cracks in unidirectional composites. Compos. Struct. 182, 223–236 (2017)

    Google Scholar 

  46. Chatzigeorgiou, G., Charalambakis, N., Chemisky, Y., Meraghni, F.: Computational Methods. In: Chatzigeorgiou, G., Charalambakis, N., Chemisky, Y., Meraghni, F. (eds.) Thermomechanical Behavior of Dissipative Composite Materials, pp. 89–116. Elsevier, Amsterdam (2017)

    MATH  Google Scholar 

  47. Chatzigeorgiou, G., Meraghni, F., Charalambakis, N.: Chapter 12—Nonlinear composites. In: Chatzigeorgiou, G., Meraghni, F., Charalambakis, N., (eds), Multiscale Modeling Approaches for Composites: Elsevier, pp. 299–324 (2022)

  48. Lemaitre, J.: Coupled elasto-plasticity and damage constitutive equations. Comput. Methods Appl. Mech. Eng. 51, 31–49 (1985)

    MATH  Google Scholar 

  49. Detrez, F., Cantournet, S., Seguela, R.: Plasticity/damage coupling in semi-crystalline polymers prior to yielding: micromechanisms and damage law identification. Polymer 52, 1998–2008 (2011)

    Google Scholar 

  50. Krairi, A., Doghri, I.: A thermodynamically-based constitutive model for thermoplastic polymers coupling viscoelasticity, viscoplasticity and ductile damage. Int. J. Plast 60, 163–181 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fodil Meraghni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Chatzigeorgiou, G., Robert, G. et al. Combination of mean-field micromechanics and cycle jump technique for cyclic response of PA66/GF composites with viscoelastic–viscoplastic and damage mechanisms. Acta Mech 234, 1533–1552 (2023). https://doi.org/10.1007/s00707-022-03448-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03448-4

Navigation