Skip to main content
Log in

On Rayleigh-type surface wave in incompressible nematic elastomers

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, the propagation of a Rayleigh-type wave is explored in a half-space of an incompressible nematic elastomer with a uniform director aligned orthogonal to the surface. The nematic elastomer is idealized so as to fit within the framework of linear viscoelasticity theory. The governing equations of nematic elastomers are subjected to the Tiersten-type impedance boundary conditions. An explicit secular equation of the Rayleigh wave is obtained which depends upon the non-dimensional anisotropy parameter, impedance parameters, frequency, rubber relaxation time, director rotation times, and the dynamic soft elasticity of nematic elastomers. The numerical computations of the Rayleigh wave speed are restricted for the case of ideal nematic rubbers. The Rayleigh wave speed is illustrated graphically to observe the effects of non-dimensional anisotropy parameter, frequency, impedance parameters, rubber relaxation time, and director rotation times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. de Gennes, PG.: Liquid crystals of one- and two- dimensional order. In: Helfrich, W., Heppke, G. (eds) Springer, New York (1980)

  2. Finkelmann, H., Kock, H.J., Rehage, H.: Liquid crystalline elastomers-a new type of liquid of liquid crystalline material. Makromol. Chem. Rapid Commun. 2, 317–322 (1981)

    Google Scholar 

  3. de Gennes, P.G., Prost, J.: The Physics of Liquid Crystals, 2nd edn. Clarendon Press, Oxford (1993)

    Google Scholar 

  4. Brand, H.R., Finkelmann, H.: Physical properties of liquid crystalline elastomers. In: Demus, D., et al. (eds.) Handbook of Liquid Crystals. Wiley VCH, Weinheim (1998)

    Google Scholar 

  5. Warner, M., Terentjev, E.M.: Liquid Crystal Elastomers. Clarendon Press, Oxford (2003)

    Google Scholar 

  6. Kupfer, J., Finkelmann, H.: Nematic liquid single-crystal elastomers. Makromol. Chem. Rapid Commun. 12, 717–726 (1991)

    Google Scholar 

  7. Kupfer, J., Finkelmann, H.: Liquid crystal elastomer: influence of the orientational distribution of the crosslinks on the phase behaviour and reorientation process. Macromol. Chem. Phys. 195, 1353–1367 (1994)

    Google Scholar 

  8. Brand, H.R., Plenier, H., Martinoty, P.: Selected macroscopic properties of liquid crystalline elastomers. Soft Matter 2, 182–199 (2006)

    Google Scholar 

  9. Finkelmann, H., Greve, A., Warner, M.: The elastic ansiotropy of nematic elastomers. Euro Phys. J. E 5, 281–293 (2001)

    Google Scholar 

  10. Bladon, P., Warner, M., Terentjev, E.M.: Orientational order in strained nematic networks. Macromolecules 27, 7067–7075 (1994)

    Google Scholar 

  11. Bladon, P., Terentjev, E.M., Warner, M.: Transitions and instabilities in liquid crystal elastomers. Phys. Rev. E 47, R3838–R3840 (1993)

    Google Scholar 

  12. Martinoty, P., Stein, P., Finkelmann, H., Pleiner, H., Brand, H.R.: Mechanical properties of monodomain side chain nematic elastomers. Euro Phys. J. E 14, 311–321 (2004)

    Google Scholar 

  13. Anderson, D.R., Carlson, D.E., Fried, E.: A continuum-mechanical theory of nematic elastomers. J. Elast. 56, 33–58 (1999)

    MathSciNet  MATH  Google Scholar 

  14. Golubovic, L., Lubensky, T.C.: Nonlinear elasticity of amorphous solids. Phys. Rev. Lett. 63, 1082–1085 (1989)

    Google Scholar 

  15. Teixeira, P.L.C., Warner, M.: Dynamics of soft and semisoft nematic elastomers. Phys. Rev. E 42, 603–609 (1999)

    Google Scholar 

  16. Uchida, N.: Soft and nonsoft structural transitions in disordered nematic networks. Phy Rev E. 62, 5119–5136 (2000)

    Google Scholar 

  17. Carlson, D.E., Fried, E., Sellers, S.: Force-free states, relative strains, and soft elasticity in nematic elastomers. J. Elast. 69, 161–180 (2002)

    MathSciNet  MATH  Google Scholar 

  18. Stenull, O., Lubensky, T.C.: Anomalous elasticity of nematic elastomers. Europhys. Lett. 61, 776–782 (2003)

    Google Scholar 

  19. Stenull, O., Lubensky, T.C.: Dynamics of nematic elastomers. Phys. Rev. E 69, 051801/1-051801/13 (2004)

    MathSciNet  Google Scholar 

  20. Fried, E., Sellers, S.: Free-energy density functions for nematic elastomers. J. Mech. Phys. Solids 52, 1671–1689 (2004)

    MathSciNet  MATH  Google Scholar 

  21. Gallani, J.L., Hilton, L., Martinoty, P., Doublet, F., Mauzac, M.: Mechanical behaviour of side-chain liquid crystalline networks. J Physique II France 6, 443–452 (1996)

    Google Scholar 

  22. Terentjev, E.M., Warner, M.: Linear hydrodynamic and viscoelasticity of nematic elastomers. Eur. Phys. J. E 4, 343–353 (2001)

    Google Scholar 

  23. Terentjev, E.M., Kamotski, I.V., Zakharov, D.D., Fradkin, L.J.: Propagation of acoustic waves in nematic elastomers. Phys. Rev. E 66, 052701–4 (2002)

    Google Scholar 

  24. Fradkin, L.J., Kamotski, I.V., Terentjev, E.M., Zakharov, D.D.: Low frequency acoustic waves in nematic elastomers. Proc. R. Soc. London A 459, 2627–2642 (2003)

    MATH  Google Scholar 

  25. Singh, B.: Reflection of homogeneous elastic waves from free surface of nematic elastomer half-space. J. Phys. D Appl. Phys. 40, 584–593 (2007)

    Google Scholar 

  26. Zakharov, D.D., Kaptsov, A.V.: Peculiarities of the surface and guided waves propagation in heterogeneous composites with nematic coatings. Proc. Appl. Math. Mech. 10, 501–502 (2010)

    Google Scholar 

  27. Zakharov, D.D., Kaptsov, A.V.: Effect of nematic coating on fundamental mode propagation in layered elastic plates. Acoust. Phys. 57, 59–65 (2011)

    Google Scholar 

  28. Zakharov, D.D.: Surface and edge waves in solids with nematic coating. Math. Mech. Solids 17, 67–80 (2011)

    MathSciNet  MATH  Google Scholar 

  29. Zakharov, D.D.: Resonance phenomena in surface wave propagation in elastic bodies coated with nematic elastomers. Mech. Solids 48, 659–672 (2013)

    Google Scholar 

  30. Yang, S., Liu, Y., Gu, Y., Yang, Q.: Rayleigh wave propagation in nematic elastomers. Soft Matter 10, 4110–4117 (2014)

    Google Scholar 

  31. Yang, S., Liu, Y., Liang, T.: Band structures in the nematic elastomers phononic crystals. Phys. B 506, 55–64 (2017)

    Google Scholar 

  32. Zhao, D., Liu, Y., Liu, C.: Transverse vibration of nematic elastomer Timoshenko beams. Phys. Rev. E 95, 012703–13 (2017)

    MathSciNet  Google Scholar 

  33. Zhao, D., Liu, Y.: Effects of director rotation relaxation on viscoelastic wave dispersion in nematic elastomer beams. Math. Mech. Solids 24, 1105–1113 (2019)

    MathSciNet  MATH  Google Scholar 

  34. Zhao, D., Liu, Y.: Effects of director orientation on the vibration of anisotropic nematic elastomer plates under various boundary conditions. Smart Mater. Struct. 27, 075044 (2018)

    MathSciNet  Google Scholar 

  35. Tiersten, H.F.: Elastic surface waves guided by thin films. J. Appl. Phys. 40, 770–789 (1969)

    Google Scholar 

  36. Malischewsky, P.G.: Surface Waves and Discontinuities. Elsevier, Amsterdam (1987)

    Google Scholar 

  37. Godoy, E., Durn, M., Ndlec, J.-C.: On the existence of surface waves in an elastic half-space with impedance boundary conditions. Wave Motion 49, 585–594 (2012)

    MathSciNet  Google Scholar 

  38. Vinh, P.C., Hue, T.T.T.: Rayleigh waves with impedance boundary conditions in anisotropic solids. Wave Motion 51, 1082–1092 (2014)

    MathSciNet  MATH  Google Scholar 

  39. Vinh, P.C., Hue, T.T.T.: Rayleigh waves with impedance boundary conditions in incompressible anisotropic half-spaces. Int. J. Eng. Sci. 85, 175–185 (2014)

    MathSciNet  MATH  Google Scholar 

  40. Singh, B.: Rayleigh waves in an incompressible fibre-reinforced elastic solid with impedance boundary conditions. J. Mech. Behav. Mater. 24, 183–186 (2015)

    Google Scholar 

  41. Vinh, P.C., Xuan, N.Q.: Rayleigh waves with impedance boundary condition: formula for the velocity, existence and uniqueness. Euro J. Mech. A Solids. 61, 180–185 (2017)

    MathSciNet  MATH  Google Scholar 

  42. Saccomandi, G., Ogden, R.W.: Mechanics and Thermomechanics of Rubberlike Solids, CISM Courses and Lectures No. 452, International Centre for Mechanical Sciences. Springer (2014)

  43. Ogden, R.W., Vinh, P.C.: On Rayleigh waves in incompressible orthotropic elastic solids. J. Acoust. Soc. Am. 115, 530–533 (2004)

    Google Scholar 

  44. Warner, M., Terentjev, E.M.: Nematic elastomers : A new state of matter? Prog. Polym. Sci. 21, 853–891 (1996)

    Google Scholar 

  45. Schonstein, M., Stille, W., Strobl, G.: Effect of the network on the director fluctuations in a nematic side-group elastomer analysed by static and dynamic light scattering. Euro Phys. J. E 5, 511–517 (2001)

    Google Scholar 

  46. Schmidtke, J., Stille, W., Strobl, G.: Static and dynamic light scattering of a nematic side-group polysiloxane. Macromolecules 33, 2922–2928 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baljeet Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, B. On Rayleigh-type surface wave in incompressible nematic elastomers. Acta Mech 234, 1033–1044 (2023). https://doi.org/10.1007/s00707-022-03423-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03423-z

Navigation