Skip to main content
Log in

Structure carrying moving subsystems with distributed viscoelastic coupling: part I-modeling and dynamics response

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A vibration problem of a structure carrying moving subsystems is commonly seen in engineering applications. Most research work considers point-wise coupling between the structure and the subsystems which is adequate for traditional wheel-track vehicles, however, no longer valid for maglev trains or magnetic projectiles leveraging electromagnetic levitation. To address the issue, this paper proposes a new Timoshenko beam-moving rigid body model with distributed viscoelastic coupling, providing more accuracy and fidelity in describing the coupling between the structure and the moving subsystems. The coupled system is discretized via generalized assumed-mode method and then solved with Runge–Kutta scheme. Numerical simulations thoroughly studied the dynamic response of the beam structure and investigated the effect of system configuration on its dynamic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Steele, C.R.: The finite beam with a moving load. J. Appl. Mech. 34(1), 111–118 (1967)

    Article  MATH  Google Scholar 

  2. Achenbach, J.D., Sun, C.T.: Moving load on a flexibly supported Timoshenko beam. Int. J. Solids Struct. 1(4), 353–370 (1965)

    Article  Google Scholar 

  3. Zheng, D.Y., Cheung, Y.K., Au, F.T.K., Cheng, Y.S.: Vibration of multi-span non-uniform beams under moving loads by using modified beam vibration functions. J. Sound Vib. 212(3), 455–467 (1998)

    Article  MATH  Google Scholar 

  4. Song, Y., Kim, T., Lee, U.: Vibration of a beam subjected to a moving force: frequency-domain spectral element modeling and analysis. Int. J. Mech. Sci. 113, 162–174 (2016)

    Article  Google Scholar 

  5. Ting, E.C., Genin, J., Ginsberg, J.H.: A general algorithm for moving mass problems. J. Sound Vib. 33(1), 49–58 (1974)

    Article  MATH  Google Scholar 

  6. Lee, U.: Separation between the flexible structure and the moving mass sliding on it. J. Sound Vib. 209(5), 867–877 (1998)

    Article  Google Scholar 

  7. Pesterev, A.V., Bergman, L.A.: A contribution to the moving mass problem. J. Vib. Acoust. Trans. ASME 120(3), 824–826 (1998)

    Article  Google Scholar 

  8. Rao, S.S.: Vibration of Continuous Systems. Wiley (2019)

  9. Pirmoradian, M., Keshmiri, M., Karimpour, H.: On the parametric excitation of a Timoshenko beam due to intermittent passage of moving masses: instability and resonance analysis. Acta Mech. 226(4), 1241–1253 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Esen, I.: Dynamic response of a functionally graded Timoshenko beam on two-parameter elastic foundations due to a variable velocity moving mass. Int. J. Mech. Sci. 153, 21–35 (2019)

    Article  Google Scholar 

  11. Ding, H., Yang, Y., Chen, L.-Q., Yang, S.-P.: Vibration of vehicle-pavement coupled system based on a Timoshenko beam on a nonlinear foundation. J. Sound Vib. 333(24), 6623–6636 (2014)

    Article  Google Scholar 

  12. Jong-Shyong, W., Chiang, L.-K.: Out-of-plane responses of a circular curved Timoshenko beam due to a moving load. Int. J. Solids Struct. 40(26), 7425–7448 (2003)

    Article  MATH  Google Scholar 

  13. Chen, Y.-H., Huang, Y.-H.: Dynamic stiffness of infinite Timoshenko beam on viscoelastic foundation in moving co-ordinate. Int. J. Numer. Methods Eng. 48(1), 1–18 (2000)

    Article  MATH  Google Scholar 

  14. Chen, Y.-H., Huang, Y.-H., Shih, C.-T.: Response of an infinite Timoshenko beam on a viscoelastic foundation to a harmonic moving load. J. Sound Vib. 241(5), 809–824 (2001)

    Article  Google Scholar 

  15. Metrikine, A.V., Verichev, S.N.: Instability of vibrations of a moving two-mass oscillator on a flexibly supported Timoshenko beam. Arch. Appl. Mech. 71(9), 613–624 (2001)

    Article  MATH  Google Scholar 

  16. Kargarnovin, M.H., Younesian, D.: Dynamics of Timoshenko beams on Pasternak foundation under moving load. Mech. Res. Commun. 31(6), 713–723 (2004)

    Article  MATH  Google Scholar 

  17. Younesian, D., Kargarnovin, M.H., Thompson, D.J., Jones, C.J.C.: Parametrically excited vibration of a Timoshenko beam on random viscoelastic foundation subjected to a harmonic moving load. Nonlinear Dyn. 45(1), 75–93 (2006)

  18. Hryniewicz, Z., Kozioł, P.: Wavelet-based solution for vibrations of a beam on a nonlinear viscoelastic foundation due to moving load. J. Theor. Appl. Mech. 51 (2013)

  19. Ding, H., Shi, K.-L., Chen, L.-Q., Yang, S.-P.: Dynamic response of an infinite Timoshenko beam on a nonlinear viscoelastic foundation to a moving load. Nonlinear Dyn. 73(1), 285–298 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lee, Y.-H., Kim, S.-S.: Combined analytical and numerical solution for an elastically supported Timoshenko beam to a moving load. J. Mech. Sci. Technol. 28(7), 2549–2559 (2014)

    Article  Google Scholar 

  21. Li, Y.-C., Feng, S.-J., Chen, Z.-L.: Moving load response of an axially loaded Timoshenko beam on a multilayered transversely isotropic half-space comprising different media. Int. J. Numer. Anal. Methods Geomech. 44(18), 2501–2523 (2020)

    Article  Google Scholar 

  22. Johansson, C., Pacoste, C., Karoumi, R.: Closed-form solution for the mode superposition analysis of the vibration in multi-span beam bridges caused by concentrated moving loads. Comput. Struct. 119, 85–94 (2013)

    Article  Google Scholar 

  23. Xia, H., Li, H.L., Guo, W.W., De Roeck, G.: Vibration resonance and cancellation of simply supported bridges under moving train loads. J. Eng. Mech. 140(5), 04014015 (2014)

    Google Scholar 

  24. Museros, P., Moliner, E., Martínez-Rodrigo, M.D.: Free vibrations of simply-supported beam bridges under moving loads: maximum resonance, cancellation and resonant vertical acceleration. J. Sound Vib. 332(2), 326–345 (2013)

    Article  Google Scholar 

  25. Nikkhoo, A., Rofooei, F.R., Shadnam, M.R.: Dynamic behavior and modal control of beams under moving mass. J. Sound Vib. 306(3–5), 712–724 (2007)

    Article  MathSciNet  Google Scholar 

  26. Dimitrovová, Z.: New semi-analytical solution for a uniformly moving mass on a beam on a two-parameter visco-elastic foundation. Int. J. Mech. Sci. 127, 142–162 (2017)

    Article  Google Scholar 

  27. Aldraihem, O.J., Baz, A.: Dynamic stability of stepped beams under moving loads. J. Sound Vib. 250(5), 835–848 (2002)

    Article  Google Scholar 

  28. Sun, Z.: Moving-inertial-loads-induced dynamic instability for slender beams considering parametric resonances. J. Vib. Acoust. 138(1), 011014 (2016)

    Article  Google Scholar 

  29. Chatterjee, P.K., Datta, T.K., Surana, C.S.: Vibration of continuous bridges under moving vehicles. J. Sound Vib. 169(5), 619–632 (1994)

    Article  MATH  Google Scholar 

  30. Green, M.F., Cebon, D.: Dynamic interaction between heavy vehicles and highway bridges. Comput. Struct. 62(2), 253–264 (1997)

    Article  Google Scholar 

  31. Rajabi, K., Kargarnovin, M.H., Gharini, M.: Dynamic analysis of a functionally graded simply supported Euler–Bernoulli beam subjected to a moving oscillator. Acta Mech. 224(2), 425–446 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ebrahimi, M., Gholampour, S., Kafshgarkolaei, H.J., Nikbin, I.M.: Dynamic behavior of a multispan continuous beam traversed by a moving oscillator. Acta Mech. 226(12), 4247–4257 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Caprani, C.C., Ahmadi, E.: Formulation of human–structure interaction system models for vertical vibration. J. Sound Vib. 377, 346–367 (2016)

    Article  Google Scholar 

  34. Yang, B., Gao, H., Liu, S.: Vibrations of a multi-span beam structure carrying many moving oscillators. Int. J. Struct. Stab. Dyn. 18(10), 1850125 (2018)

    Article  MathSciNet  Google Scholar 

  35. Dimitrakopoulos, E.G., Zeng, Q.: A three-dimensional dynamic analysis scheme for the interaction between trains and curved railway bridges. Comput. Struct. 149, 43–60 (2015)

    Article  Google Scholar 

  36. Wang, W., Zhang, Y., Ouyang, H.: An iterative method for solving the dynamic response of railway vehicle-track coupled systems based on prediction of wheel-rail forces. Eng. Struct. 151, 297–311 (2017)

    Article  Google Scholar 

  37. Gao, H., Yang, B.: Dynamic response of a beam structure excited by sequentially moving rigid bodies. Int. J. Struct. Stab. Dyn. 20(08), 2050093 (2020)

    Article  MathSciNet  Google Scholar 

  38. Gao, H., Yang, B., Qu, Y., Meng, G.: Structure carrying moving subsystems through distributed viscoelastic coupling: part II-parametric resonance and stability. Unpublished (2022)

  39. Gao, H., Yang, B.: Dynamic analysis and parametric excitation of a multi-span beam structure coupled with a sequence of moving rigid bodies. In: ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers Digital Collection (2018)

  40. Gao, H., Yang, B.: Parametric vibration of a flexible structure excited by periodic passage of moving oscillators. J. Appl. Mech. Trans. ASME 87(7), 071001 (2020)

    Article  Google Scholar 

  41. Yang, Y.-B., Yau, J.D., Yao, Z., Wu, Y.S.: Vehicle–Bridge Interaction Dynamics: With Applications to High-Speed Railways. World Scientific (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 159 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, H., Yang, B., Qu, Y. et al. Structure carrying moving subsystems with distributed viscoelastic coupling: part I-modeling and dynamics response. Acta Mech 233, 4467–4485 (2022). https://doi.org/10.1007/s00707-022-03329-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03329-w

Navigation