Skip to main content
Log in

A novel hybrid technique to decompose in-plane thermoelastic displacement fields into thermal and structural displacement fields

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Structural health monitoring techniques assess structural responses by retrieving total displacement fields encompassing thermal and structural displacement fields. However, techniques to decompose a total displacement field into individual displacement fields—thermal- and structural-load induced fields—have not been explored. To address this research gap, the present work proposes and demonstrates a novel hybrid technique—coupling a low-fidelity FEM and an analytical technique formulated using complex variables. The technique incorporates partial coarse-mesh FEM boundary data with field variables expressions—presented as Laurent series—to compute unknown constants in the series. The technique is illustrated for thermoelastic problems including circular and elliptical rings and a plate with a hole. On the other hand, non-thermoelastic problems of practical utility—a special case of thermoelastic problems—are presented to demonstrate the versatility of the technique. The individual decomposed displacement fields are plotted as contour plots over the domains and are corroborated with high-fidelity FEM. \( L^{2} \) norms indicate a very good correspondence for thermoelastic problems, indicating the efficacy of the technique. The non-thermoelastic cases show higher deviation but within reasonable limits. Subsequently, the extension of the technique to experiments and evaluation of the stress fields are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Abbreviations

\( \mathrm {iFEM} \) :

Inverse finite element method

\( \mathrm {MAM} \) :

Modal analysis method

\(\mathrm {FEM}\) :

Finite element method

\(\mathrm {BEM}\) :

Boundary element method

\( \mathrm {RIM} \) :

Radial integration method

\(\mathrm {DIC}\) :

Digital image correlation

\(\mathrm {IRT}\) :

Infrared thermography

\(\mathrm {HM}\) :

Hybrid method

\(\mathrm {BCs}\) :

Boundary conditions

\(\mathrm {BVP}\) :

Boundary value problem

T :

Temperature field

\( \omega \left( z \right) \), \(g'\left( {{z_t}} \right) \) :

Temperature functions

\( {q_x} \), \( {q_y} \) :

Heat flux components in cartesian coordinate

z, \( z_{t} \) :

Complex variables

k :

Thermal conductivity

Q :

Total or resultant heat flow

\(\phi \) :

Airy stress function (ASF)

\(r, \theta \) :

Polar coordinate

\( \gamma (z) \), \( \psi (z) \) :

Kolosov-Muskhelishvili (K-M) potentials.

\({u_{x}}, {u_{y} }\) :

Displacement components in cartesian coordinate

\( \kappa \), \( \alpha \) :

Material parameters

E :

Young’s modulus

G :

Rigidity modulus

\(\nu \) :

Poisson’s ratio

\( \alpha _{0} \) :

Thermal expansion coefficient

\(S^n\), \(S^n_{x}\), \(S^n_{y}\) :

Traction vector and its components in cartesian coordinate

F, F x, \(F_{y}\) :

Force vector and its components in cartesian coordinate

\({u_{r}}, {u_{\theta } }\) :

Displacement components in polar coordinate

\({\sigma _{r}}, {\sigma _{\theta }, \tau _{r\theta }}\) :

Stress components in polar coordinate

\({\sigma _{x}}, {\sigma _{y}, \tau _{xy}}\) :

Stress components in cartesian coordinate

\( \Gamma \) :

Boundary

\( \Omega \) :

Domain

\({{{X}}_{{\mathrm{FEM}}}}\), \( {{{X}}_{{{HM}}}}\) :

Field variables from FEM and HM

\( n_{t} \), \( n_{s} \) :

Best choice of n from thermal- and structural- parts

P :

Uniformly applied pressure

\(\beta \) :

Half-angle of a patch-load

\( u_x^{0} \), \( u_y^{0} \) :

Rigid body translational terms

\( {w_z} \) :

Rigid body rotational terms

\( {\sigma _{ij}}\), \( {\sigma _{kl}} \) :

Stresses in indicial notation

\({e_{ij}}\), \({e_{kl}}\) :

Strains in indicial notation

\( {C_{ijkl}} \) :

Elasticity tensor

\( {S_{ijkl}} \) :

Elastic compliance tensor

\( \mu \), \( \mu _{t} \) :

Parameters in characteristic equation

\( {F_i} \) :

Arbitrary functions where, i = 1 to 4

\({\Phi _i(z_i)}\) :

Complex potentials where, i =1 to 2

\(q_{i}\) :

Heat flux vector where, i =1 to 2.

\(k_{ij}\) :

Thermal conductivity tensor where, ij =1 to 2.

References

  1. Cerracchio, P., Gherlone, M., Tessler, A.: Real-time displacement monitoring of a composite stiffened panel subjected to mechanical and thermal loads. Meccanica 50(10), 2487–2496 (2015)

    Article  Google Scholar 

  2. Wang, X., Si, C., Wang, Z., Li, Y.: Displacement field reconstruction of structures under thermal and mechanical loading environment. Aerospace Sci. Technol. 117, 106914 (2021)

    Article  Google Scholar 

  3. Oberg, M.B., de Oliveira, D.F., Goulart, J.N., Anflor, C.: A novel to perform a thermoelastic analysis using digital image correlation and the boundary element method. Int. J. Mech. Mater. Eng. 15(1), 1–13 (2020)

    Article  Google Scholar 

  4. Nowak, M., Maj, M.: Determination of coupled mechanical and thermal fields using 2D digital image correlation and infrared thermography: Numerical procedures and results. Arch Civil Mech Eng 18(2), 630–644 (2018)

    Article  Google Scholar 

  5. Chao, C.K., Shen, M.H., Fung, C.K.: On multiple circular inclusions in plane thermoelasticity. Int. J Solids Struct 34(15), 1873–1892 (1997)

    Article  Google Scholar 

  6. Hasebe, N., Wang, X.: Complex variable method for thermal stress problem. J. Thermal Stress. 28(6–7), 595–648 (2005)

    Article  MathSciNet  Google Scholar 

  7. Sadd, M.H.: Elasticity: Theory, Applications, and Numerics. Academic Press, Cambridge (2009)

    Google Scholar 

  8. Chao, C.K., Shen, M.H.: On bonded circular inclusions in plane thermoelasticity. J. Appl. Mech. 64(4), 1000–1004 (1997)

    Article  Google Scholar 

  9. Zhu, Z.H., Meguid, S.A.: On the thermoelastic stresses of multiple interacting inhomogeneities. Int. J. Solids Struct. 37(16), 2313–2330 (2000)

    Article  Google Scholar 

  10. Xiao, Ws., Xie, C., Liu, Yw.: Interaction between heat dipole and circular interfacial crack. Appl. Math. Mech. 30(10), 1221–1232 (2009)

    Article  MathSciNet  Google Scholar 

  11. Wang, C.-H., Chao, C.-K.: On perturbation solutions for nearly circular inclusion problems in plane thermoelasticity. J. Appl. Mech. 69(1), 36–44 (2002)

    Article  Google Scholar 

  12. Yoshikawa, K., Hasebe, N.: Heat source in infinite plane with elliptic rigid inclusion and hole. J. Eng. Mech. 125(6), 684–691 (1999)

    Google Scholar 

  13. Timoshenko, S.P., Goodier, J.N.: Theory of Elasticity, vol. 3. McGraw-Hill, New York (1970)

    MATH  Google Scholar 

  14. Muskhelishvili, N.I.: Some Basic Problems of the Mathematical Theory of Elasticity. Springer Science & Business Media, Berlin (2013)

    Google Scholar 

  15. Barber, J.R.: Solid Mechanics and its Applications, Elasticity. Kluwer, Dordrecht (2002)

    Google Scholar 

  16. Saada, A.S.: Elasticity: Theory and Applications, Revised and Updated. J. Ross Publishing, Fort Lauderdale (2009)

    Google Scholar 

  17. Thube, Y.S., Lohit, S.K., Gotkhindi, T.P.: A coupled analytical-FE hybrid approach for elastostatics. Meccanica 55(11), 2235–2262 (2020)

    Article  MathSciNet  Google Scholar 

  18. Isida, M., Igawa, H.: Analysis of a zig-zag array of circular holes in an infinite solid under uniaxial tension. Int. J. Solids Struct. 27(7), 849–864 (1991)

    Article  Google Scholar 

  19. Isida, M., Igawa, H.: Analysis of a zig-zag array of circular inclusions in a solid under uniaxial tension. Int. J. Solids Struct. 27(12), 1515–1535 (1991)

    Article  Google Scholar 

  20. Qin, Y.X., Xie, W.T., Ren, H.P., Li, X.: Crane hook stress analysis upon boundary interpolated reproducing Kernel particle method. Eng. Anal. Bound. Elements 63, 74–81 (2016)

    Article  MathSciNet  Google Scholar 

  21. Thube, Y.S., Lohit, S.K., Gotkhindi, T.P.: Stress analysis using complex variable-based analytical-FEM hybrid approach. Recent Adv. Comput. Exp. Mech I, 397–412 (2022)

  22. Pan, B., Qian, K., Xie, H., Asundi, A.: Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Measure. Sci. Technol. 20(6), 062001 (2009)

    Article  Google Scholar 

  23. Khaja, A.A., Matthys, D.R., Rowlands, R.E.: Determining all displacements, strains and stresses full-field from measured values of a single displacement component. Exp. Mech. 54(3), 443–455 (2014)

    Article  Google Scholar 

  24. Paneerselvam, S., Samad, W.A., Venkatesh, R., Song, K.W., El-Hajjar, R.F., Rowlands, R.E.: Displacement-based experimental stress analysis of a circularly-perforated asymmetrical isotropic structure. Exp. Mech. 57(1), 129–142 (2017)

    Article  Google Scholar 

  25. Kalaycioglu, B., Alshaya, A., Rowlands, R.: Experimental stress analysis of an arbitrary geometry containing irregularly shaped hole. Strain 55(3), e12306 (2019)

    Article  Google Scholar 

  26. Lekhnitskii, S.G.: Theory of Elasticity of an Anisotropic Body. Mir Publishers, Moscow (1981)

    MATH  Google Scholar 

  27. Sendeckyj, G.P.: Some topics in anisotropic elasticity. Comp. Mater. 7, 1–48 (2016)

    Google Scholar 

  28. Ukadgaonker, V.G.: Theory of Elasticity and Fracture Mechanics. PHI Learning Pvt. Ltd., New Delhi (2015)

    Google Scholar 

  29. Hou, P.F., Jiang, H.Y., Li, Q.H.: Three-dimensional steady-state general solution for isotropic thermoelastic materials with applications I: general solutions. J. Thermal Stress. 36(7), 727–747 (2013)

    Article  Google Scholar 

  30. Chen, W.Q., Zhu, J., Li, X.Y.: General solutions for elasticity of transversely isotropic materials with thermal and other effects: a review. J. Thermal Stress. 42(1), 90–106 (2019)

    Article  Google Scholar 

  31. Gao, X.L., Rowlands, R.E.: Hybrid method for stress analysis of finite three-dimensional elastic components. Int. J. Solids Struct. 37(19), 2727–2751 (2000)

    Article  Google Scholar 

  32. Jafari, M., Jafari, M.: Effect of uniform heat flux on stress distribution around a triangular hole in anisotropic infinite plates. J. Thermal Stress. 41(6), 726–747 (2018)

    Article  Google Scholar 

  33. Jafari, M., Jafari, M.: Effect of hole geometry on the thermal stress analysis of perforated composite plate under uniform heat flux. J. Comp. Mater. 53(8), 1079–1095 (2019)

    Article  Google Scholar 

  34. Tarn, J.Q., Wang, Y.M.: Thermal stresses in anisotropic bodies with a hole or a rigid inclusion. J. Thermal Stress. 16(4), 455–471 (1993)

    Article  MathSciNet  Google Scholar 

  35. Rasouli, M., Jafari, M.: Thermal stress analysis of infinite anisotropic plate with elliptical hole under uniform heat flux. J. Thermal Stress. 39(11), 1341–1355 (2016)

    Article  Google Scholar 

  36. Chao, C.K., Shen, M.H.: Thermal stresses in a generally anisotropic body with an elliptic inclusion subject to uniform heat flow. J. Appl. Mech. 65(1), 51–58 (1998)

    Article  Google Scholar 

  37. Tauchert, T.R.: A review: quasistatic thermal stresses in anisotropic elastic bodies, with applications to composite materials. Acta Mech. 23(1), 113–135 (1975)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tejas P. Gotkhindi.

Ethics declarations

Conflict of interest/Competing interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thube, Y.S., Gotkhindi, T.P. A novel hybrid technique to decompose in-plane thermoelastic displacement fields into thermal and structural displacement fields. Acta Mech 233, 3747–3776 (2022). https://doi.org/10.1007/s00707-022-03298-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03298-0

Navigation