Skip to main content
Log in

A new model for thermal buckling of an anisotropic elastic composite beam incorporating piezoelectric, flexoelectric and semiconducting effects

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A new model for thermal buckling of an anisotropic elastic composite beam consisting of a dielectric core and two thin semiconductor surface layers is developed. The field equations and boundary conditions for the beam are obtained by using the piezoelectricity, flexoelectricity, strain gradient elasticity and semiconductor theories and the kinematic relations for a Timoshenko beam. The current model includes piezoelectric, flexoelectric and semiconducting effects simultaneously, unlike existing models. A variational formulation based on the principle of minimum potential energy is employed for the dielectric core, where the contribution of the two thin semiconductor surface layers is incorporated through the work done by the free charge density. Two simplified models for piezoelectric and flexoelectric composite beams incorporating the semiconducting effect are obtained as two special cases of the new model for the dielectric composite beam. Thermal buckling of a simply supported composite beam with a piezoelectric or flexoelectric core and two thin semiconductor surface layers is analytically studied by directly applying the two simplified models, leading to the determination of the critical buckling temperature and concentration perturbation of free carriers in the composite beam. Numerical results show that the presence of the piezoelectric or flexoelectric effect results in an increased critical buckling temperature, while the inclusion of the semiconducting effect leads to a reduced value in both cases. In addition, it is seen that the redistributions of free carriers in the piezoelectric composite beam are uniform, whereas those in the flexoelectric composite beam are non-uniform along the beam thickness direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abbas, I.A., Kumar, R., Rani, L.: Thermoelastic interaction in a thermally conducting cubic crystal subjected to ramp-type heating. Appl. Math. Comput. 254, 360–369 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abdollahi, A., Peco, C., Millán, D., Arroyo, M., Arias, I.: Computational evaluation of the flexoelectric effect in dielectric solids. J. Appl. Phys. 116, 093502 (2014)

    Article  Google Scholar 

  3. Ai, L., Gao, X.-L.: Micromechanical modeling of 3-D printable interpenetrating phase composites with tailorable effective elastic properties including negative Poisson’s ratio. J. Micromech. Mol. Phys. 2, 1750015 (2017)

    Article  Google Scholar 

  4. Auld, B.A.: Acoustic Fields and Waves in Solids. Wiley, New York (1973)

    Google Scholar 

  5. Bell, A.J., Comyn, T.P., Stevenson, T.J.: Expanding the application space for piezoelectric materials. APL Mater. 9, 010901 (2021)

    Article  Google Scholar 

  6. Chen, W., Liang, X., Shen, S.: Forced vibration of piezoelectric and flexoelectric Euler-Bernoulli beams by dynamic Green’s functions. Acta Mech. 232, 449–460 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, W.-R., Chen, C.-S., Chang, H.: Thermal buckling analysis of functionally graded Euler-Bernoulli beams with temperature-dependent properties. J. Appl. Comput. Mech. 6, 457–470 (2020)

    Google Scholar 

  8. Cheng, R., Zhang, C., Chen, W., Yang, J.: Piezotronic effects in the extension of a composite fiber of piezoelectric dielectrics and nonpiezoelectric semiconductors. J. Appl. Phys. 124, 064506 (2018)

    Article  Google Scholar 

  9. Chu, L., Li, Y., Dui, G.: Size-dependent electromechanical coupling in functionally graded flexoelectric nanocylinders. Acta Mech. 230, 3071–3086 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Deng, Q., Lv, S., Li, Z., Tan, K., Liang, X., Shen, S.: The impact of flexoelectricity on materials, devices, and physics. J. Appl. Phys. 128, 080902 (2020)

    Article  Google Scholar 

  11. Ebrahimi, F., Barati, M.R.: Dynamic modeling of a thermo-piezo-electrically actuated nanosize beam subjected to a magnetic field. Appl. Phys. A 122, 451 (2016)

    Article  Google Scholar 

  12. Elahi, H., Munir, K., Eugeni, M., Abrar, M., Khan, A., Arshad, A., Gaudenzi, P.: A review on applications of piezoelectric materials in aerospace industry. Integr. Ferroelectr. 211, 25–44 (2020)

    Article  Google Scholar 

  13. Fu, Y., Wang, J., Mao, Y.: Nonlinear analysis of buckling, free vibration and dynamic stability for the piezoelectric functionally graded beams in thermal environment. Appl. Math. Model. 36, 4324–4340 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gao, X.-L.: A new Timoshenko beam model incorporating microstructure and surface energy effects. Acta Mech. 226, 457–474 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gao, X.-L., Mall, S.: Variational solution for a cracked mosaic model of woven fabric composites. Int. J. Solids Struct. 38(5), 855–874 (2001)

    Article  MATH  Google Scholar 

  16. Gao, X.-L., Park, S.K.: Variational formulation of a simplified strain gradient elasticity theory and its application to a pressurized thick-walled cylinder problem. Int. J. Solids Struct. 44, 7486–7499 (2007)

    Article  MATH  Google Scholar 

  17. Guin, L., Jabbour, M., Triantafyllidis, N.: The p-n junction under nonuniform strains: general theory and application to photovoltaics. J. Mech. Phys. Solids 110, 54–79 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kim, B., Hopcroft, M.A., Candler, R.N., Jha, C.M., Agarwal, M., Melamud, R., Chandorkar, S.A., Yama, G., Kenny, T.W.: Temperature dependence of quality factor in MEMS resonators. J. Microelectromech. Syst. 17, 755–766 (2008)

    Article  Google Scholar 

  19. Lei, J., He, Y., Guo, S., Li, Z., Liu, D.: Thermal buckling and vibration of functionally graded sinusoidal microbeams incorporating nonlinear temperature distribution using DQM. J. Therm. Stresses 40(6), 665–689 (2017)

    Article  Google Scholar 

  20. Liang, X., Hu, S., Shen, S.: Effects of surface and flexoelectricity on a piezoelectric nanobeam. Smart. Mater. Struct. 23, 035020 (2014)

    Article  Google Scholar 

  21. Ma, H.M., Gao, X.-L., Reddy, J.N.: A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J. Mech. Phys. Solids 56, 3379–3391 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ma, W., Cross, L.E.: Flexoelectricity of barium titanate. Appl. Phys. Lett. 88, 232902 (2006)

    Article  Google Scholar 

  23. Majdoub, M.S., Sharma, P., Cagin, T.: Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect. Phys. Rev. B 77, 125424 (2008)

    Article  Google Scholar 

  24. Mao, S., Purohit, P.K.: Insights into flexoelectric solids from strain-gradient elasticity. J. Appl. Mech. 81, 081004 (2014)

    Article  Google Scholar 

  25. Maranganti, R., Sharma, N.D., Sharma, P.: Electromechanical coupling in nonpiezoelectric materials due to nanoscale nonlocal size effects: Green’s function solutions and embedded inclusions. Phys. Rev. B 74, 014110 (2006)

    Article  Google Scholar 

  26. Mindlin, R.D., Eshel, N.N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4, 109–124 (1968)

    Article  MATH  Google Scholar 

  27. Mindlin, R.D.: Polarization gradient in elastic dielectrics. Int. J. Solids Struct. 4, 637–642 (1968)

    Article  MATH  Google Scholar 

  28. Mindlin, R.D.: High frequency vibrations of piezoelectric crystal plates. Int. J. Solids Struct. 8, 895–906 (1972)

    Article  MATH  Google Scholar 

  29. Mindlin, R.D.: Equations of high frequency vibrations of thermopiezoelectric crystal plates. Int. J. Solids Struct. 10, 625–637 (1974)

    Article  MATH  Google Scholar 

  30. Ootao, Y., Tanigawa, Y.: Transient analysis of multilayered magneto-electro-thermoelastic strip due to nonuniform heat supply. Compos. Struct. 68, 471–480 (2005)

    Article  Google Scholar 

  31. Papargyri-Beskou, S., Tsepoura, K.G., Polyzos, D., Beskos, D.E.: Bending and stability analysis of gradient elastic beams. Int. J. Solids Struct. 40, 385–400 (2003)

    Article  MATH  Google Scholar 

  32. Polizzotto, C.: A hierarchy of simplified constitutive models within isotropic strain gradient elasticity. Eur. J. Mech. A Solid 61, 92–109 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Quan, T.Q., Dinh Duc, N.: Nonlinear thermal stability of eccentrically stiffened FGM double curved shallow shells. J. Therm. Stresses 40(2), 211–236 (2017)

    Article  Google Scholar 

  34. Qu, Y., Jin, F., Yang, J.: Effects of mechanical fields on mobile charges in a composite beam of flexoelectric dielectrics and semiconductors. J. Appl. Phys. 127, 194502 (2020)

    Article  Google Scholar 

  35. Qu, Y.L., Li, P., Zhang, G.Y., Jin, F., Gao, X.-L.: A microstructure-dependent anisotropic magneto-electro-elastic Mindlin plate model based on an extended modified couple stress theory. Acta Mech. 231(10), 4323–4350 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  36. Qu, Y., Jin, F., Yang, J.: Temperature effects on mobile charges in thermopiezoelectric semiconductor plates. Int. J. Appl. Mech. 13(3), 2150037 (2021)

    Article  Google Scholar 

  37. Qu, Y., Jin, F., Yang, J.: Magnetically induced charge redistribution in the bending of a composite beam with flexoelectric semiconductor and piezomagnetic dielectric layers. J. Appl. Phys. 129, 064503 (2021)

    Article  Google Scholar 

  38. Qu, Y., Jin, F., Yang, J.: Buckling of flexoelectric semiconductor beams. Acta Mech. 232, 2623–2633 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  39. Qu, Y., Jin, F., Yang, J.: Torsion of a flexoelectric semiconductor rod with a rectangular cross section. Arch. Appl. Mech. 91, 2027–2038 (2021)

    Article  Google Scholar 

  40. Qu, Y.L., Zhang, G.Y., Fan, Y.M., Jin, F.: A non-classical theory of elastic dielectrics incorporating couple stress and quadrupole effects: part I—reconsideration of curvature-based flexoelectricity theory. Math. Mech. Solids 26(11), 1647–1659 (2021)

    Article  MathSciNet  Google Scholar 

  41. Qu, Y.L., Zhang, G.Y., Gao, X.-L., Jin, F.: A new model for thermally induced redistributions of free carriers in centrosymmetric flexoelectric semiconductor beams. Manuscript under review (2022)

  42. Ray, M.C.: Analysis of smart nanobeams integrated with a flexoelectric nano actuator layer. Smart Mater. Struct. 25(5), 055011 (2016)

    Article  Google Scholar 

  43. Ren, C., Wang, K.F., Wang, B.L.: Adjusting the electromechanical coupling behaviors of piezoelectric semiconductor nanowires via strain gradient and flexoelectric effects. J. Appl. Phys. 128, 215701 (2020)

    Article  Google Scholar 

  44. Sadd, M.H.: Elasticity: Theory, Applications, and Numerics, 3rd edn. Academic Press, Oxford (2014)

    Google Scholar 

  45. Samani, M.S.E., Beni, Y.T.: Size dependent thermo-mechanical buckling of the flexoelectric nanobeam. Mater. Res. Express 5, 085018 (2018)

    Article  Google Scholar 

  46. Shen, S., Hu, S.: A theory of flexoelectricity with surface effect for elastic dielectrics. J. Mech. Phys. Solids 58(5), 665–677 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  47. Shivashankar, P., Gopalakrishnan, S.: Review on the use of piezoelectric materials for active vibration, noise, and flow control. Smart Mater. Struct. 29, 053001 (2020)

    Article  Google Scholar 

  48. Shu, L., Liang, R., Rao, Z., Fei, L., Ke, S., Wang, Y.: Flexoelectric materials and their related applications: a focused review. J. Adv. Ceram. 8, 153–173 (2019)

    Article  Google Scholar 

  49. Shu, L., Wei, X., Pang, T., Yao, X., Wang, C.: Symmetry of flexoelectric coefficients in crystalline medium. J. Appl. Phys. 110, 104106 (2011)

    Article  Google Scholar 

  50. Sze, S.M., Ng, K.K.: Physics of Semiconductor Devices, 3rd edn. Wiley, New York (2006)

    Book  Google Scholar 

  51. Tagantsev, A.K., Meunier, V., Sharma, P.: Novel electromechanical phenomena at the nanoscale: phenomenological theory and atomistic modeling. MRS Bull. 34(9), 643–647 (2009)

    Article  Google Scholar 

  52. Tian, X., Xu, M., Deng, Q., Sladek, J., Sladek, V., Repka, M., Li, Q.: Size-dependent direct and converse flexoelectricity around a micro-hole. Acta Mech. 231, 4851–4865 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  53. Tiersten, H.F.: Linear Piezoelectric Plate Vibrations. Plenum, New York (1969)

    Book  Google Scholar 

  54. Vineyard, E., Gao, X.-L.: Topology and shape optimization of 2-D and 3-D micro-architectured thermoelastic metamaterials using a parametric level set method. CMES-Comput. Model. Eng. Sci. 127, 819–854 (2021)

    Google Scholar 

  55. Wang, B., Gu, Y., Zhang, S., Chen, L.Q.: Flexoelectricity in solids: progress, challenges, and perspectives. Prog. Mater. Sci. 106, 100570 (2019)

    Article  Google Scholar 

  56. Wang, G.-F., Yu, S.-W., Feng, X.-Q.: A piezoelectric constitutive theory with rotation gradient effects. Eur. J. Mech. A Solid. 23(3), 455–466 (2004)

    Article  MATH  Google Scholar 

  57. Wang, L., Liu, S., Feng, X., Zhang, C., Zhu, L., Zhai, J., Qin, Y., Wang, Z.L.: Flexoelectronics of centrosymmetric semiconductors. Nat. Nanotechnol. 15(8), 661–667 (2020)

    Article  Google Scholar 

  58. Yan, Z., Jiang, L.Y.: Flexoelectric effect on the electroelastic responses of bending piezoelectric nanobeams. J. Appl. Phys. 113, 194102 (2013)

    Article  Google Scholar 

  59. Yang, J.: Analysis of Piezoelectric Semiconductor Structures. Springer, Switzerland (2020)

    Book  MATH  Google Scholar 

  60. Yang, J.: Mechanics of Piezoelectric Structures, 2nd edn. World Scientific, Singapore (2020)

    Book  Google Scholar 

  61. Yang, J., Zhou, H.: Amplification of acoustic waves in piezoelectric semiconductor plates. Int. J. Solids Struct. 42, 3171–3183 (2005)

    Article  MATH  Google Scholar 

  62. Zhang, G.Y., Gao, X.-L., Zheng, C.Y., Mi, C.W.: A non-classical Bernoulli-Euler beam model based on a simplified micromorphic elasticity theory. Mech. Mater. 161, 103967 (2021)

    Article  Google Scholar 

  63. Zhang, G.Y., He, Z.Z., Gao, X.-L., Zhou, H.W.: Band gaps in a periodic electro-elastic composite beam structure incorporating microstructure and flexoelectric effects. Arch. Appl. Mech. (2022). https://doi.org/10.1007/s00419-021-02088-9

    Article  Google Scholar 

  64. Zhang, G.Y., Qu, Y.L., Gao, X.-L., Jin, F.: A transversely isotropic magneto-electro-elastic Timoshenko beam model incorporating microstructure and foundation effects. Mech. Mater. 149, 103412 (2020)

    Article  Google Scholar 

  65. Zhang, R., Liang, X., Shen, S.: A Timoshenko dielectric beam model with flexoelectric effect. Meccanica 51(5), 1181–1188 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  66. Zhao, M., Liu, X., Fan, C., Lu, C., Wang, B.: Theoretical analysis on the extension of a piezoelectric semi-conductor nanowire: effects of flexoelectricity and strain gradient. J. Appl. Phys. 127(8), 085707 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 12002086 (G. Y. Zhang); Grant No. 12072253 (F. Jin)) and Zhishan Youth Scholar Program of SEU (G. Y. Zhang). The authors also would like to thank Prof. Shaofan Li and two anonymous reviewers for their encouragement and helpful comments on an earlier version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. Y. Zhang or X.-L. Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G.Y., Guo, Z.W., Qu, Y.L. et al. A new model for thermal buckling of an anisotropic elastic composite beam incorporating piezoelectric, flexoelectric and semiconducting effects. Acta Mech 233, 1719–1738 (2022). https://doi.org/10.1007/s00707-022-03186-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03186-7

Navigation