Skip to main content
Log in

Size-dependent complex band structure of tunable beam metamaterial with shunted piezoelectric array

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This study investigates the size effects on the dispersion relation of the transverse waves propagating through micro-beam metamaterial covered by piezoelectric patches that are connected with external shunted circuits. Based on the modified couple stress theory and Hamilton’s principle, the transfer matrix model is established for determining the complex band structure which incorporates the length scaling effect and the electromechanical resonance. Numerical results show the size-dependent behavior of the complex band structure in terms of the location, the range, and the decaying level. The differences are indicated between the results obtained by the non-classical model and the classical elasticity-based model and the effects of Poisson’s ratio. The connection modes of the piezoelectric layers on the characteristics of transverse wave propagation and attenuation are also examined. Further, the tunable nature is demonstrated via investigating the influences of the unit cell length, the circuit parameters, and the distribution of piezoelectric materials on the attenuation diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhao, Y.P., Wei, P.J.: The band gap of 1d viscoelastic phononic crystal. Comput. Mater. Sci. 46(3), 603–606 (2009). https://doi.org/10.1016/j.commatsci.2009.03.040

    Article  Google Scholar 

  2. Kushwaha, M.S., Halevi, P., Dobrzynski, L., Djafari-Rouhani, B.: Acoustic band structure of periodic elastic composites. Phys. Rev. Lett. 71(13), 2022–2025 (1993). https://doi.org/10.1103/PhysRevLett.71.2022

    Article  Google Scholar 

  3. Ding, Y., Liu, Z., Qiu, C., Shi, J.: Metamaterial with simultaneously negative bulk modulus and mass density. Phys. Rev. Lett. 99(9), 093904 (2007). https://doi.org/10.1103/PhysRevLett.99.093904

    Article  Google Scholar 

  4. Fokin, V., Ambati, M., Sun, C., Zhang, X.: Method for retrieving effective properties of locally resonant acoustic metamaterials. Phys. Rev. B 76(14), 144302 (2007). https://doi.org/10.1103/PhysRevB.76.144302

    Article  Google Scholar 

  5. Wang, Y.F., Wang, Y.Z., Wu, B., Chen, W.Q., Wang, Y.S.: Tunable and active phononic crystals and metamaterials. Appl. Mech. Rev. 72(4), 040801–0408036 (2020). https://doi.org/10.1115/1.4046222

    Article  Google Scholar 

  6. Chen, Y.Y., Huang, G.L., Sun, C.T.: Band gap control in an active elastic metamaterial with negative capacitance piezoelectric shunting. J. Vib. Acoust. 136(6), 061008–0610016 (2014). https://doi.org/10.1115/1.4028378

    Article  Google Scholar 

  7. Xiao, X., He, Z.C., Li, E., Zhou, B., Li, X.K.: A lightweight adaptive hybrid laminate metamaterial with higher design freedom for wave attenuation. Compos. Struct. 243, 112230 (2020). https://doi.org/10.1016/j.compstruct.2020.112230

    Article  Google Scholar 

  8. Yuan, L., Cai, Z., Zhao, P., Du, J., Ma, T., Wang, J.: Active tuning of flexural wave in periodic steel-concrete composite beam with shunted cement-based piezoelectric patches. Mech. Adv. Mater. Struct. (2020). https://doi.org/10.1080/15376494.2020.1753864

    Article  Google Scholar 

  9. Lucklum, F., Vellekoop, M.J.: Bandgap engineering of three-dimensional phononic crystals in a simple cubic lattice. Appl. Phys. Lett. 113(20), 201902 (2018). https://doi.org/10.1063/1.5049663

    Article  Google Scholar 

  10. Lou, J., He, L., Yang, J., Kitipornchai, S., Wu, H.: Wave propagation in viscoelastic phononic crystal rods with internal resonators. Appl. Acoust. 141, 382–392 (2018). https://doi.org/10.1016/j.apacoust.2018.07.029

    Article  Google Scholar 

  11. Li, J., Li, S.: Generating ultra wide low-frequency gap for transverse wave isolation via inertial amplification effects. Phys. Lett. A 382(5), 241–247 (2018). https://doi.org/10.1016/j.physleta.2017.11.023

    Article  MathSciNet  Google Scholar 

  12. Li, Y., Zhou, Q., Zhou, L., Zhu, L., Guo, K.: Flexural wave band gaps and vibration attenuation characteristics in periodic bi-directionally orthogonal stiffened plates. Ocean Eng. 178, 95–103 (2019). https://doi.org/10.1016/j.oceaneng.2019.02.076

    Article  Google Scholar 

  13. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16(1), 51–78 (1964)

    Article  MathSciNet  Google Scholar 

  14. Zhao, B., Chen, J., Liu, T., Song, W., Zhang, J.: A new Timoshenko beam model based on modified gradient elasticity: Shearing effect and size effect of micro-beam. Compos. Struct. 223, 110946 (2019). https://doi.org/10.1016/j.compstruct.2019.110946

    Article  Google Scholar 

  15. Polizzotto, C.: A hierarchy of simplified constitutive models within isotropic strain gradient elasticity. Eur. J. Mech. A Solids 61, 92–109 (2017). https://doi.org/10.1016/j.euromechsol.2016.09.006

    Article  MathSciNet  MATH  Google Scholar 

  16. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54(9), 4703–4710 (1983). https://doi.org/10.1063/1.332803

    Article  Google Scholar 

  17. Eringen, A.C.: Nonlocal polar elastic continua. Int. J. Eng. Sci. 10(1), 1–16 (1972). https://doi.org/10.1016/0020-7225(72)90070-5

    Article  MathSciNet  MATH  Google Scholar 

  18. Gurtin, M.E., Ian Murdoch, A.: Surface stress in solids. Int. J. Solids Struct. 14(6), 431–440 (1978). https://doi.org/10.1016/0020-7683(78)90008-2

    Article  MATH  Google Scholar 

  19. Gurtin, M.E., Ian Murdoch, A.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57(4), 291–323 (1975). https://doi.org/10.1007/BF00261375

    Article  MathSciNet  MATH  Google Scholar 

  20. Park, S.K., Gao, X.L.: Variational formulation of a modified couple stress theory and its application to a simple shear problem. Z. Angew. Math. Phys. 59(5), 904–917 (2008). https://doi.org/10.1007/s00033-006-6073-8

    Article  MathSciNet  MATH  Google Scholar 

  21. Gao, X.L.: A new Timoshenko beam model incorporating microstructure and surface energy effects. Acta Mech. 226(2), 457–474 (2015). https://doi.org/10.1007/s00707-014-1189-y

    Article  MathSciNet  MATH  Google Scholar 

  22. Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10), 2731–2743 (2002). https://doi.org/10.1016/S0020-7683(02)00152-X

    Article  MATH  Google Scholar 

  23. Roque, C.M.C., Ferreira, A.J.M., Reddy, J.N.: Analysis of Mindlin micro plates with a modified couple stress theory and a meshless method. Appl. Math. Model 37(7), 4626–4633 (2013). https://doi.org/10.1016/j.apm.2012.09.063

    Article  MathSciNet  MATH  Google Scholar 

  24. Hosseini, M., Bahaadini, R.: Size dependent stability analysis of cantilever micro-pipes conveying fluid based on modified strain gradient theory. Int. J. Eng. Sci. 101, 1–13 (2016). https://doi.org/10.1016/j.ijengsci.2015.12.012

    Article  Google Scholar 

  25. Anthoine, A.: Effect of couple-stresses on the elastic bending of beams. Int. J. Solids Struct. 37(7), 1003–1018 (2000). https://doi.org/10.1016/s0020-7683(98)00283-2

    Article  MATH  Google Scholar 

  26. Sahmani, S., Ansari, R.: On the free vibration response of functionally graded higher-order shear deformable microplates based on the strain gradient elasticity theory. Compos. Struct. 95, 430–442 (2013). https://doi.org/10.1016/j.compstruct.2012.07.025

    Article  Google Scholar 

  27. Li, Y., Wei, P., Zhou, Y.: Band gaps of elastic waves in 1-d phononic crystal with dipolar gradient elasticity. Acta Mech. 227(4), 1005–1023 (2016). https://doi.org/10.1007/s00707-015-1495-z

    Article  MathSciNet  MATH  Google Scholar 

  28. Song, F., Huang, G.L., Varadan, V.K.: Study of wave propagation in nanowires with surface effects by using a high-order continuum theory. Acta Mech. 209(1), 129 (2009). https://doi.org/10.1007/s00707-009-0156-5

    Article  MATH  Google Scholar 

  29. Park, S.K., Gao, X.L.: Bernoulli–Euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16(11), 2355–2359 (2006). https://doi.org/10.1088/0960-1317/16/11/015

    Article  Google Scholar 

  30. Zhang, G.Y., Gao, X.L.: Elastic wave propagation in 3-d periodic composites: Band gaps incorporating microstructure effects. Compos. Struct. 204, 920–932 (2018). https://doi.org/10.1016/j.compstruct.2018.07.115

    Article  Google Scholar 

  31. Zhang, G.Y., Gao, X.L., Bishop, J.E., Fang, H.E.: Band gaps for elastic wave propagation in a periodic composite beam structure incorporating microstructure and surface energy effects. Compos. Struct. 189(4), 263–272 (2018). https://doi.org/10.1016/j.compstruct.2017.11.040

    Article  Google Scholar 

  32. Zhao, P., Zhang, K., Deng, Z.: Size effects on the band gap of flexural wave propagation in one-dimensional periodic micro-beams. Compos. Struct. 271, 114162 (2021). https://doi.org/10.1016/j.compstruct.2021.114162

    Article  Google Scholar 

  33. Zhang, G.Y., Gao, X.L.: Band gaps for wave propagation in 2-d periodic three-phase composites with coated star-shaped inclusions and an orthotropic matrix. Compos. B Eng. 182, 107319 (2020). https://doi.org/10.1016/j.compositesb.2019.107319

    Article  Google Scholar 

  34. Hong, J., He, Z., Zhang, G., Mi, C.: Size and temperature effects on band gaps in periodic fluid-filled micropipes. Appl. Math. Mech. 42(9), 1219–1232 (2021). https://doi.org/10.1007/s10483-021-2769-8

    Article  MathSciNet  Google Scholar 

  35. Thorp, O., Ruzzene, M., Baz, A.: Attenuation and localization of wave propagation in rods with periodic shunted piezoelectric patches. Smart Mater. Struct. 10(5), 979–989 (2001). https://doi.org/10.1088/0964-1726/10/5/314

    Article  Google Scholar 

  36. Hou, Z., Assouar, B.M.: Tunable solid acoustic metamaterial with negative elastic modulus. Appl. Phys. Lett. 106(25), 251901 (2015). https://doi.org/10.1063/1.4922873

    Article  Google Scholar 

  37. Wen, J.H., Chen, S.B., Wang, G., Yu, D.L., Wen, X.S.: Directionality of wave propagation and attenuation in plates with resonant shunting arrays. J. Intell. Mater. Syst. Struct. 27(1), 28–38 (2016). https://doi.org/10.1177/1045389x14560361

    Article  Google Scholar 

  38. Zhu, R., Chen, Y.Y., Barnhart, M.V., Hu, G.K., Sun, C.T., Huang, G.L.: Experimental study of an adaptive elastic metamaterial controlled by electric circuits. Appl. Phys. Lett. 108(1), 011905 (2016). https://doi.org/10.1063/1.4939546

    Article  Google Scholar 

  39. Ma, H.M., Gao, X.L., Reddy, J.N.: A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J. Mech. Phys. Solids 56(12), 3379–3391 (2008). https://doi.org/10.1016/j.jmps.2008.09.007

    Article  MathSciNet  MATH  Google Scholar 

  40. Qu, Y.L., Li, P., Zhang, G.Y., Jin, F., Gao, X.L.: A microstructure-dependent anisotropic magneto-electro-elastic mindlin plate model based on an extended modified couple stress theory. Acta Mech. 231(10), 4323–4350 (2020). https://doi.org/10.1007/s00707-020-02745-0

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhang, G.Y., Gao, X.L., Guo, Z.Y.: A non-classical model for an orthotropic Kirchhoff plate embedded in a viscoelastic medium. Acta Mech. 228(11), 3811–3825 (2017). https://doi.org/10.1007/s00707-017-1906-4

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang, G.: Analysis of bimorph piezoelectric beam energy harvesters using Timoshenko and Euler–Bernoulli beam theory. J. Intell. Mater. Syst. Struct. 24(2), 226–239 (2012). https://doi.org/10.1177/1045389X12461080

    Article  Google Scholar 

  43. Liu, C., Yu, J., Zhang, B., Zhang, X., Elmaimouni, L.: Analysis of Lamb wave propagation in a functionally graded piezoelectric small-scale plate based on the modified couple stress theory. Compos. Struct. 265, 113733 (2021). https://doi.org/10.1016/j.compstruct.2021.113733

    Article  Google Scholar 

  44. Zhang, G.Y., Qu, Y.L., Gao, X.L., Jin, F.: A transversely isotropic magneto-electro-elastic Timoshenko beam model incorporating microstructure and foundation effects. Mech. Mater. 149, 103412 (2020). https://doi.org/10.1016/j.mechmat.2020.103412

    Article  Google Scholar 

Download references

Acknowledgements

The present work was supported by the Natural Science Foundation of Hainan Province (No. 2019RC068) and the National Natural Science Foundation of China (No. 51909050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingru Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Miao, Z., Ma, Q. et al. Size-dependent complex band structure of tunable beam metamaterial with shunted piezoelectric array. Acta Mech 233, 889–904 (2022). https://doi.org/10.1007/s00707-022-03145-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03145-2

Navigation