Skip to main content

Advertisement

Log in

Splitting and curling performance of metal foam-filled circular tubes

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, analytical and experimental methods are used to study the deformation mechanisms of metal foam-filled circular tubes in axial splitting and curling modes. Metal foam-filled tubes with prefabricated cracks are placed on a die, and axial compressive experiments are conducted. In the experiments, the force–displacement curves of metal foam-filled tubes are measured, and the deformation modes of metal foam-filled tubes are observed. An analytical model is established for metal foam-filled circular tubes in axial splitting and curling modes. In the analytical model, energy is dissipated by splitting, curling, and plastic bending of the tubes, as well as by friction between the tubes and die and foam compression. The analytical, numerical and experimental results are compared. The analytical model captures the experimental results reasonably well, and the numerical results are in good agreement with experimental ones. It is found that, in the stage of steady deformation, the axial compressive force increases with the increase in the number of prefabricated cracks, the ratio of radius to the wall-thickness and the semi-angle of conical die. The axial compressive force decreases with the increase in the ratio of the prefabricated-crack length to the wall-thickness. Foam-filled tubes have a higher specific energy absorption than sandwich tubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability Statement

The authors attest that all data for this study are included in the paper.

References

  1. Lu, G., Yu, T.X.: Energy Absorption of Structures and Materials. Woodhead Publishing Ltd, Cambridge (2003)

    Book  Google Scholar 

  2. Chen, J.S., Chen, D.W.: Deformation of a spatial elastica constrained inside a springy tube. Acta Mech. 230(12), 4303–4310 (2019)

    Article  Google Scholar 

  3. Zheng, G., Wang, Z., Song, K.: Energy absorption on metal-composite hybrid structures: experimental and numerical simulation. Thin Wall. Struct. 150, 106571 (2020)

    Article  Google Scholar 

  4. Wang, S., Guo, G.J.: Performance of extruded magnesium alloy AZ31B circular tubes under uniaxial compression. Thin Wall. Struct. 131, 464–474 (2018)

    Article  Google Scholar 

  5. Eyer, G., Montagnier, O., Charles, J.P., Hochard, C.: Design of a composite tube to analyze the compressive behavior of CFRP. Compos. A 87, 115–122 (2016)

    Article  Google Scholar 

  6. Tanaskovica, J., Milkovica, D., Lucanin, V., Vasic, F.G.: Experimental investigations of the shrinking-splitting tube collision energy absorber. Thin Wall. Struct. 86, 142–147 (2015)

    Article  Google Scholar 

  7. Guillow, S.R., Lu, G., Grzebieta, R.H.: Quasi-static axial compression of thin-walled circular aluminium tubes. Int. J. Mech. Sci. 43(9), 2103–2123 (2001)

    Article  Google Scholar 

  8. Hsu, S.S., Jones, N.: Quasi-static and dynamic axial crushing of thin-walled circular stainless steel, mild steel and aluminium alloy tubes. Int. J. Crashworthiness 9(2), 195–217 (2004)

    Article  Google Scholar 

  9. Shakeri, M., Salehghaffari, S., Mirzaeifar, R.: Expansion of circular tubes by rigid tubes as impact energy absorbers: Experimental and theoretical investigation. Int. J. Crashworthiness 12(5), 493–501 (2007)

    Article  Google Scholar 

  10. Huang, X., Lu, G., Yu, T.X.: Collapse of square metal tube in splitting and curling mode. P. I. Mech. Eng. C 44, 2369–2391 (2002)

    Google Scholar 

  11. Karagiozova, D., Nurick, G.N., Chung, K.Y.S.: Energy absorption of aluminium alloy circular and square tubes under an axial explosive load. Thin Wall. Struct. 43(6), 956–982 (2005)

    Article  Google Scholar 

  12. Reddy, T.J., Narayanamurthy, V., Rao, Y.V.D.: Enhancement in specific energy absorption of invertubes. Int. J. Mech. Sci. 159, 424–440 (2019)

    Article  Google Scholar 

  13. Li, Y., You, Z.: External inversion of thin-walled corrugated tubes. Int. J. Mech. Sci. 144, 54–66 (2018)

    Article  Google Scholar 

  14. Stronge, W.J., Yu, T.X., Johnson, W.: Long stroke energy dissipation in splitting tubes. Int. J. Mech. Sci. 25(9), 637–647 (1983)

    Article  Google Scholar 

  15. Huang, X., Lu, G., Yu, T.X.: On the axial splitting and curling of circular metal tubes. Int. J. Mech. Sci. 44, 2369–2391 (2002)

    Article  Google Scholar 

  16. Niknejad, A., Rezaei, B., Liaghat, G.H.: Empty circular metal tubes in the splitting process-theoretical and experimental studies. Thin Wall. Struct. 72, 48–60 (2013)

    Article  Google Scholar 

  17. Rouzegar, J., Assaee, H., Fakher, M.S.S., Niknejad, A.: A novel method for enhancing the energy absorption characteristics of circular tubular structures under axial splitting. P. I. Mech. Eng. D 232(13), 1747–1761 (2018)

    Article  Google Scholar 

  18. Baroutaji, A., Arjunan, A., Niknejad, A., Tran, T.N., Olabi, A.G.: Application of cellular material in crashworthiness applications: an overview. In: Hashmi, S. (ed.) Reference Module in Materials Science and Materials Engineering, pp. 1–14. Elsevier, Oxford (2019)

    Google Scholar 

  19. Rajendran, R., Prem, S.K., Chandrasekar, B., Gokhale, A., Basu, S.: Impact energy absorption of aluminium foam fitted AISI 304L stainless steel tube. Mater. Des. 30, 1777–1784 (2009)

    Article  Google Scholar 

  20. Lampinen, B.E., Jeryan, R.A.: Effectiveness of polyurethane foam in energy absorbing structures. SAE Technical Paper (1982)

  21. Reid, S.R., Reddy, T.Y., Gray, M.D.: Static and dynamic axial crushing of foam-filled sheet metal tubes. Int. J. Mech. Sci. 28(5), 295–322 (1986)

    Article  Google Scholar 

  22. Reid, S.R., Reddy, T.Y.: Static and dynamic crushing of tapered sheet metal tubes of rectangular cross-section. Int. J. Mech. Sci. 28(9), 623–637 (1986)

    Article  Google Scholar 

  23. Hanssen, A.G., Langseth, M.: Static and dynamic crushing of square aluminium extrusions with aluminium foam filler. Int. J. Impact Eng. 24(4), 347–383 (2000)

    Article  Google Scholar 

  24. Li, Z.B., Chen, R., Lu, F.Y.: Comparative analysis of crashworthiness of empty and foam-filled thin-walled tubes. Thin Wall. Struct. 124, 343–349 (2018)

    Article  Google Scholar 

  25. Seitzberger, M., Rammerstorfer, F.G., Degischer, H.P., Gradinger, R.: Crushing of axially compressed steel tubes filled with aluminium foam. Acta Mech. 125(1–4), 93–105 (1997)

    Article  Google Scholar 

  26. Seitzberger, M., Rammerstorfer, F.G., Gradinger, R., Degischer, H.P., Blaimschein, M., Walch, C.: Experimental studies on the quasi-static axial crushing of steel columns filled with aluminium foam. Int. J. Solids Struct. 37(30), 4125–4147 (2000)

    Article  Google Scholar 

  27. Zarei, H.R., Kroger, M.: Optimization of the foam-filled aluminum tubes for crush box application. Thin Wall. Struct. 46, 214–221 (2008)

    Article  Google Scholar 

  28. Yu, X.H., Qin, Q.H., Zhang, J.X., He, S.Y., Xiang, C.P., Wang, M.S., Wang, T.J.: Crushing and energy absorption of density-graded foam-filled square columns: experimental and theoretical investigations. Compos. Struct. 201, 423–433 (2018)

    Article  Google Scholar 

  29. Xiang, X.M., Zou, S.M., Ngoc, S.H., Lu, G.X., Kong, I.: Energy absorption of bio-inspired multi-layered graded foam-filled structures under axial crushing. Compos. B 198, 10826 (2020)

    Article  Google Scholar 

  30. Santosa, S., Wierzbicki, T.: Crash behavior of box columns filled with aluminum honeycomb or foam. Computers Struct. 68(4), 343–367 (1998)

    Article  Google Scholar 

  31. Zhang, J.X., Ye, Y., Zhu, Y.Q., Yuan, H., Qin, Q.H., Wang, T.J.: On axial splitting and curling behaviour of circular sandwich metal tubes with metal foam core. Int. J. Solids Struct. 202, 111–125 (2020)

    Article  Google Scholar 

  32. Deshpande, V.S., Fleck, N.A.: Isotropic constitutive models for metallic foams. J. Mech. Phys. Solids 48(6–7), 1253–1283 (2000)

    Article  Google Scholar 

  33. Hooputra, H., Gese, H., Dell, H., Werenr, H.: A comprehensive failure model for crashworthiness simulation of aluminium extrusions. Int. J. Crashworthiness 9(5), 449–464 (2004)

    Article  Google Scholar 

  34. Barsoum, I., Khan, F., Molki, A., Seibi, A.: Modeling of ductile crack propagation in expanded thin-walled 6063–T5 aluminum tubes. Int. J. Mech. Sci. 80(1), 160–168 (2014)

    Article  Google Scholar 

  35. Xiang, X., Zou, S., Ha, N.S., Lu, G., Kong, I.: Energy absorption of bio-inspired multi-layered graded foam-filled structures under axial crushing. Compos. B 198, 108216 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for their financial support through NSFC (11872291 and 11972281), opening project of State Key Laboratory of Structural Analysis for Industrial Equipment (GZ20102), Aeronautical Science Foundation of China (201941070001) and Natural Science Basic Research Plan in Shaanxi Province of China (2020JM-034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghua Qin.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Derivation of solving for M p

This appendix is the derivation of solving for the bending moment Mp of a circular tube to its PNA [31].

The centre angle of each strip is \(\frac{2\pi }{n}\) for the foam-filled tube. Take one strip \(FGG^{^{\prime}} F^{^{\prime}}\) and take the centre O of the foam-filled tube as the origin to establish the coordinate system, as shown in Fig. 

Fig. 14
figure 14

Sketch of the section for the circular tube between prefabricated cracks. a The case of yC > yE > yF, b the case of yF > yC > yE, c the case of yC > yF > yE, and d the case of yE > yC > yF

14a, where the y-axis is the angular bisector of the centre angle, \(r_{1}^{^{\prime\prime}}\) is the inner radius of the metal tube, \(r_{1}^{^{\prime}}\) is the outer radius of the metal tube, and \(r_{1} = \frac{{r_{1}^{^{\prime}} + r_{1}^{^{\prime\prime}} }}{2}\). The line \(EE^{^{\prime}}\) is tangential to the arc \(GG^{^{\prime}}\) at point D. Points \(B\) and \(B^{^{\prime}}\) are points on the arc \(EE^{^{\prime}}\), and the angle BOA is \(\frac{2\pi }{n}\). The bending moment of each part of section \(FGG^{^{\prime}} F^{^{\prime}}\) to straight line \(BB^{^{\prime}}\) is given as follows. For the specimens of different geometric sizes, the relative positions of lines \(CC^{^{\prime}}\), \(EE^{^{\prime}}\) and \(FF^{^{\prime}}\) are different, and yC, yE, and yF are used to represent the y-direction coordinates of lines \(CC^{^{\prime}}\), \(EE^{^{\prime}}\) and \(FF^{^{\prime}}\), respectively.

When \(y_{C} > y_{E} > y_{F}\), as shown in Fig. 14a, the total bending moment of all the strips of the tube is

$$M_{p} = n\left( {M_{1} + M_{2} + M_{3} + M_{4} } \right),$$
(A1)

where

$$M_{1} = 2\sigma_{t} \int_{0}^{{\omega_{1} }} {\left( {r_{1}^{^{\prime}} \cos \omega - r_{1} \cos \frac{\pi }{2n}} \right)} \left( {r_{1}^{^{\prime}} \sin \omega } \right)^{2} {\text{d}} \omega ,$$
$$M_{2} = 2\sigma_{t} \int_{{\omega_{1} }}^{{\omega_{2} }} {\left( {r_{1} \cos \frac{\pi }{2n} - r_{1}^{^{\prime}} \cos \omega } \right)} \left( {r_{1}^{^{\prime}} \sin \omega } \right)^{2} {\text{d}} \omega ,$$
$$M_{3} = 2\sigma_{t} \int_{{\omega_{2} }}^{{\frac{\pi }{n}}} {\left( {r_{1} \cos \frac{\pi }{2n} - r_{1}^{^{\prime}} \cos \omega } \right)} \left( {r_{1}^{^{\prime}} \sin \omega - r_{1}^{^{\prime\prime}} \,\sqrt {1 - \left( {\frac{{r_{1} \cos \omega }}{{r_{1}^{^{\prime\prime}} }}} \right)^{2} } } \right)r_{1}^{^{\prime}} \sin \omega {\text{d}} \omega ,$$
$$M_{4} = 2\sigma_{t} \int_{{\varphi_{0} }}^{{\frac{\pi }{n}}} {\left[ {r_{1} \cos (\frac{\pi }{2n}) - r_{1}^{^{\prime\prime}} \cos \varphi } \right]} \left( {\frac{{r_{1}^{^{\prime\prime}} \cos \varphi }}{{\cos \frac{\pi }{n}}}\sin \frac{\pi }{n} - r_{1}^{^{\prime\prime}} \sin \varphi } \right)r_{1}^{^{\prime\prime}} \sin \varphi {\text{d}} \varphi ,$$
$$\omega_{1} = \cos^{ - 1} \left( {r_{1} \cos \frac{\pi }{2n}/r_{1}^{^{\prime}} } \right),$$
$$\omega_{2} = \cos^{ - 1} \frac{{r_{1}^{^{\prime\prime}} }}{{r_{1}^{^{\prime}} }},$$
$$\varphi_{0} = \cos^{ - 1} \left( {\frac{{r_{1}^{^{\prime}} \cos \frac{\pi }{n}}}{{r_{1}^{^{\prime\prime}} }}} \right).$$

When \(y_{F} > y_{C} > y_{E}\), as shown in Fig. 14b, the total bending moment of all the strips of the tube is

$$M_{p} = n\left( {M_{5} + M_{6} + M_{7} + M_{8} } \right),$$
(A2)

where

$$\begin{gathered} M_{5} = 2\sigma_{t} \int_{0}^{{\frac{\pi }{n}}} {\left( {r_{1}^{^{\prime}} \cos \omega - r_{1} \cos \frac{\pi }{2n}} \right)} \left( {r_{1}^{^{\prime}} \sin \omega } \right)^{2} {\text{d}} \omega , \hfill \\ M_{6} = \sigma_{t} r_{1}^{^{\prime}} \sin \frac{\pi }{n}\left( {r_{1} \cos \frac{\pi }{2n} - r_{1}^{^{\prime}} \cos \frac{\pi }{n}} \right)^{2} , \hfill \\ M_{7} = \sigma_{t} r_{1}^{^{\prime}} \sin \frac{\pi }{n}\left( { - r_{1}^{^{\prime\prime}} + r_{1}^{^{\prime}} \cos \frac{\pi }{2n}} \right)^{2} , \hfill \\ M_{8} = 2\sigma_{t} \int_{0}^{{\frac{\pi }{n}}} {\left( {r_{1} \cos (\frac{\pi }{2n}) - r_{1}^{^{\prime\prime}} \cos \varphi } \right)} \left( {r_{1}^{^{\prime\prime}} \cos \varphi \tan \frac{\pi }{n} - r_{1}^{^{\prime\prime}} \sin \varphi } \right)r_{1}^{^{\prime\prime}} \sin \varphi {\text{d}} \varphi . \hfill \\ \end{gathered}$$

When \(y_{C} > y_{F} > y_{E}\), as shown in Fig. 14c, the total bending moment of all the strips of the tube is

$$M_{p} = n\left( {M_{9} + M_{10} + M_{11} + M_{12} } \right),$$
(A3)

where

$$\begin{gathered} M_{9} = 2\sigma_{t} \int_{0}^{{\omega_{1} }} {\left( {r_{1}^{^{\prime}} \cos \omega - r_{1} \cos \frac{\pi }{2n}} \right)} \left( {r_{1}^{^{\prime}} \sin \omega } \right)^{2} {\text{d}} \omega , \hfill \\ M_{10} = 2\sigma_{t} \int_{{\omega_{1} }}^{{\frac{\pi }{n}}} {\left( {r_{1} \cos \frac{\pi }{2n} - r_{1}^{^{\prime}} \cos \omega } \right)} \left( {r_{1}^{^{\prime}} \sin \omega } \right)^{2} {\text{d}} \omega , \hfill \\ M_{11} = \sigma_{t} r_{1}^{^{\prime}} \sin \frac{\pi }{n}\left( { - r_{1}^{^{\prime\prime}} + r_{1}^{^{\prime}} \cos \frac{\pi }{2n}} \right)^{2} , \hfill \\ M_{12} = 2\sigma_{t} \int_{0}^{{\frac{\pi }{n}}} {\left[ {r_{1} \cos \left( {\frac{\pi }{2n}} \right) - r_{1}^{^{\prime\prime}} \cos \varphi } \right]} \left( {r_{1}^{^{\prime\prime}} \cos \varphi \tan \frac{\pi }{n} - r_{1}^{^{\prime\prime}} \sin \varphi } \right)r_{1}^{^{\prime\prime}} \sin \varphi {\text{d}} \varphi . \hfill \\ \end{gathered}$$

When \(y_{E} > y_{C} > y_{F}\), as shown in Fig. 14d, the total bending moment of all the strips of the tube is

$$M_{p} = n\left( {M_{13} + M_{14} + M_{15} + M_{16} } \right),$$
(A4)

where

\(\begin{gathered} M_{13} = 2\sigma_{t} \int_{0}^{{\omega_{2} }} {\left( {r_{1}^{^{\prime}} \cos \omega - \cos \frac{\pi }{2n}} \right)} \left( {r_{1}^{^{\prime}} \sin \omega } \right)^{2} {\text{d}} \omega , \hfill \\ M_{14} = 2\sigma_{t} \int_{{\omega_{2} }}^{{\omega_{1} }} {\left( {r_{1}^{^{\prime}} \cos \omega - r_{1} \cos \frac{\pi }{2n}} \right)} \left[ {r_{1}^{^{\prime}} \sin \omega - r_{1}^{^{\prime\prime}} \sin \left( {\cos^{ - 1} \frac{{r_{1}^{^{\prime}} \cos \omega }}{{r_{1}^{^{\prime\prime}} }}} \right)} \right]r_{1}^{^{\prime}} \sin \omega {\text{d}} \omega , \hfill \\ M_{15} = 2\sigma_{t} \int_{{\omega_{2} }}^{{\frac{\pi }{n}}} {\left( {r_{1} \cos \frac{\pi }{2n} - r_{1}^{^{\prime}} \cos \omega } \right)} \left[ {r_{1}^{^{\prime}} \sin \omega - r_{1}^{^{\prime\prime}} \sin \left( {\cos^{ - 1} \frac{{r_{1}^{^{\prime}} \cos \omega }}{{r_{1}^{^{\prime\prime}} }}} \right)} \right]r_{1}^{^{\prime}} \sin \omega {\text{d}} \omega , \hfill \\ M_{16} = 2\sigma_{t} \int_{{\varphi_{0} }}^{{\frac{\pi }{n}}} {\left( {r_{1} \cos \frac{\pi }{2n} - r_{1}^{^{\prime\prime}} \cos \varphi } \right)} \left( {r_{1}^{^{\prime\prime}} \cos \varphi \tan \frac{\pi }{n} - r_{1}^{^{\prime\prime}} \sin \varphi } \right)r_{1}^{^{\prime\prime}} \sin \varphi {\text{d}} \varphi . \hfill \\ \end{gathered}\)

Appendix 2: Derivation of solving for the curling radius

This appendix is the derivation of solving for the curling radius.

Neglecting the compression of the metal foam, according to the conservation of energy [15],

$$F\dot{w} = M_{p} \frac{{\dot{w}}}{{R + r(1 - \cos \frac{\pi }{2n})}} + n\sigma_{t} H^{2} \dot{w} + \frac{\mu F}{{\mu \cos \alpha + \sin \alpha }}\dot{w}$$
(B1)

or

$$F = \frac{\mu \cos \alpha + \sin \alpha }{{\mu \cos \alpha + \sin \alpha - \mu }}\left[ {\frac{{M_{p} }}{{R + r(1 - \cos \frac{\pi }{2n})}} + n\sigma_{t} H^{2} } \right],$$
(B2)

where \(\beta\) is the angle between the beginning of bending and the position of splitting. According to the geometrical relationship [15],

$$\beta = \cos^{ - 1} (1 - \frac{nH}{{2\pi R}}).$$
(B3)

The bending moment at the crack tip angle \(\beta\) is

$$M_{P} = NR\sin (\alpha - \beta ) - \mu NR[1 - \cos (\alpha - \beta )]$$
(B4)

as shown in Fig. 5b. Thus,

$$N = \frac{{M_{p} }}{R\sin (\alpha - \beta ) - \mu R[1 - \cos (\alpha - \beta )]}.$$
(B5)

By combining Eqs. (3) and (B5),

$$\frac{F}{\mu \cos \alpha + \sin \alpha } = \frac{{M_{p} }}{R\sin (\alpha - \beta ) - \mu R[1 - \cos (\alpha - \beta )]}.$$
(B6)

Combining (B2) and (B6), the curling radius R can be obtained.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Du, J., Guo, H. et al. Splitting and curling performance of metal foam-filled circular tubes. Acta Mech 233, 535–559 (2022). https://doi.org/10.1007/s00707-021-03116-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-03116-z

Navigation