Skip to main content
Log in

Effect of surface residual stress and surface layer stiffness on mechanical properties of nanowires

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The mechanical properties of nanowires are significantly affected by surface effects. In this work, we investigate the potential mechanisms of surface residual stress and surface layer stiffness on the bending behavior of nanowires. The deflection equation of nanowires under pure bending is first derived from the Young–Laplace equation and the Euler–Bernoulli beam theory. Subsequently, a new finite element model based on Galerkin’s weighted residual method is developed to verify the accuracy of the theoretical solution. The theoretical and numerical solutions present the significant effects of surface residual stress and surface layer stiffness on the elastic properties of nanowires depending on the feature size, boundary conditions, and sectional geometry of the nanowires. Specifically, the surface residual stress makes the simply-supported and fixed–fixed nanobeams stiffer; however, it makes the cantilever nanobeam softer. Besides, the sectional geometry of the nanowires has a noticeable impact on their transverse deflection. If the size of circumscribed circle of the cross section remains constant, the nanowires become harder as the numbers of sectional sides increase for the specific feature size and boundary conditions. If the cross-sectional area remains unchanged, the deflection of the nanowires fluctuates as the number of cross-sectional side increases. We realize that the overall Young’s modulus of nanowires is closely related to the feature size. As the cross-sectional feature size is below a critical value, the surface residual stress dominates the bending behavior of the nanowire. As the sectional feature size exceeds the critical feature size that is correlated to the nanowire boundary conditions, the factor dominating the bending behavior gradually transforms from the surface residual stress to the surface layer stiffness. This study provides a theoretical framework for developing a design strategy that incorporates surface effects in the engineering of nano/microscale architected advanced materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Maskery, I., Aboulkhair, N.T., Aremu, A.O., Tuck, C.J., Ashcroft, I.A.: Compressive failure modes and energy absorption in additively manufactured double gyroid lattices. Add. Manuf. 16, 24–29 (2017)

    Google Scholar 

  2. Mueller, J., Raney, J.R., Shea, K., Lewis, J.A.: Architected lattices with high stiffness and toughness via multicore-shell 3D printing. Adv. Mater. 30, e1705001 (2018)

    Article  Google Scholar 

  3. Chen, Y., Li, T., Jia, Z., Scarpa, F., Yao, C.-W., Wang, L.: 3D printed hierarchical honeycombs with shape integrity under large compressive deformations. Mater. Des. 137, 226–234 (2018)

    Article  Google Scholar 

  4. Kruk, S., Kivshar, Y.: Functional meta-optics and nanophotonics governed by mie resonances. ACS Photon. 4, 2638–2649 (2017)

    Article  Google Scholar 

  5. Brunet, T., Leng, J., Mondain-Monval, O.: Materials science. Soft acoustic metamaterials. Science 342, 323–324 (2013)

    Article  Google Scholar 

  6. Wang, Q., Jackson, J.A., Ge, Q., Hopkins, J.B., Spadaccini, C.M., Fang, N.X.: Lightweight mechanical metamaterials with tunable negative thermal expansion. Phys. Rev. Lett. 117, 175901 (2016)

    Article  Google Scholar 

  7. Akselrod, G.M., Argyropoulos, C., Hoang, T.B., Ciracì, C., Fang, C., Huang, J., et al.: Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas. Nat. Photon. 8, 835–840 (2014)

    Article  Google Scholar 

  8. Babaee, S., Shim, J., Weaver, J.C., Chen, E.R., Patel, N., Bertoldi, K.: 3D soft metamaterials with negative Poisson’s ratio. Adv. Mater. 25, 5044–5049 (2013)

    Article  Google Scholar 

  9. Shi, J., Mofatteh, H., Mirabolghasemi, A., Desharnais, G., Akbarzadeh, A.: Programmable multistable perforated shellular. Adv. Mater. 33, e2102423 (2021)

    Article  Google Scholar 

  10. Yuan, S., Chua, C.K., Zhou, K.: 3D-printed mechanical metamaterials with high energy absorption. Adv. Mater. Technol. 4, 1800419 (2019)

    Article  Google Scholar 

  11. Shi, J., Akbarzadeh, A.H.: Hierarchical cellular ferroelectric metamaterials: A design motif to enhance multifunctional figures of merit. Comp. Struct. 250, 112395 (2020)

    Article  Google Scholar 

  12. Cui, Y., Zhong, Z.H., Wang, D.L., Wang, W.U., Lieber, C.M.: High performance silicon nanowire field effect transistors. Nano Lett. 3, 149–152 (2003)

    Article  Google Scholar 

  13. He, Z., Yang, Y., Liang, H.W., Liu, J.W., Yu, S.H.: Nanowire genome: a magic toolbox for 1D nanostructures. Adv. Mater. 31, 51 (2019)

    Article  Google Scholar 

  14. Chen, W.S., Jiang, J.Y., Zhang, W.L., Wang, T., Zhou, J.F., Huang, C.H., et al.: Silver nanowire-modified filter with controllable silver ion release for point-of-use disinfection. Environ. Sci. Technol. 53, 7504–7512 (2019)

    Article  Google Scholar 

  15. Meille, S., Lombardi, M., Chevalier, J., Montanaro, L.: Mechanical properties of porous ceramics in compression: on the transition between elastic, brittle, and cellular behavior. J. Eur. Ceram. Soc. 32, 3959–3967 (2012)

    Article  Google Scholar 

  16. Fiedler, T., Ochsner, A., Gracio, J., Kuhn, G.: Structural modeling of the mechanical behavior of periodic cellular solids: open-cell structures. Mech. Compos. Mater. 41, 277–290 (2005)

    Article  Google Scholar 

  17. Liu, L., Chen, Y.J., Liu, H.Z., Rehman, H.U., Chen, C., Kang, H.M., et al.: A graphene oxide and functionalized carbon nanotube based semi-open cellular network for sound absorption. Soft Matter 15, 2269–2276 (2019)

    Article  Google Scholar 

  18. Zhang, C.Y., Akbarzadeh, A., Kang, W., Wang, J.X., Mirabolghasemi, A.: Nano-architected metamaterials: carbon nanotube-based nanotrusses. Carbon 131, 38–46 (2018)

    Article  Google Scholar 

  19. Zhang, X., Vyatskikh, A., Gao, H.J., Greer, J.R., Li, X.Y.: Lightweight, flaw-tolerant, and ultrastrong nanoarchitected carbon. Proc. Natl. Acad. Sci. USA 116, 6665–6672 (2019)

    Article  Google Scholar 

  20. Meza, L.R., Zelhofer, A.J., Clarke, N., Mateos, A.J., Kochmann, D.M., Greer, J.R.: Resilient 3D hierarchical architected metamaterials. Proc. Natl. Acad. Sci. USA 112, 11502–11507 (2015)

    Article  Google Scholar 

  21. Kadic, M., Milton, G.W., van Hecke, M., Wegener, M.: 3D metamaterials. Nat. Rev. Phys. 1, 198–210 (2019)

    Article  Google Scholar 

  22. Milton, G.W.: Complete characterization of the macroscopic deformations of periodic unimode metamaterials of rigid bars and pivots. J. Mech. Phys. Solids 61, 1543–1560 (2013)

    Article  MathSciNet  Google Scholar 

  23. Bauer, J., Meza, L.R., Schaedler, T.A., Schwaiger, R., Zheng, X.Y., Valdevit, L.: Nanolattices: an emerging class of mechanical metamaterials. Adv. Mater. 29, 40 (2017)

    Article  Google Scholar 

  24. Bertoldi, K., Vitelli, V., Christensen, J., van Hecke, M.: Flexible mechanical metamaterials. Nat. Rev. Mater. 2, 17066 (2017)

    Article  Google Scholar 

  25. Schaedler, T.A., Jacobsen, A.J., Torrents, A., Sorensen, A.E., Lian, J., Greer, J.R., et al.: Ultralight metallic microlattices. Science 334, 962–965 (2011)

    Article  Google Scholar 

  26. Zheng, X.Y., Lee, H., Weisgraber, T.H., Shusteff, M., DeOtte, J., Duoss, E.B., et al.: Ultralight, ultrastiff mechanical metamaterials. Science 344, 1373–1377 (2014)

    Article  Google Scholar 

  27. Bauer, J., Hengsbach, S., Tesari, I., Schwaiger, R., Kraft, O.: High-strength cellular ceramic composites with 3D microarchitecture. Proc. Natl. Acad. Sci. USA 111, 2453–2458 (2014)

    Article  Google Scholar 

  28. Sarvestani, H.Y., Akbarzadeh, A.H., Mirbolghasemi, A., Hermenean, K.: 3D printed meta-sandwich structures: failure mechanism, energy absorption and multi-hit capability. Mater. Des. 160, 179–193 (2018)

    Article  Google Scholar 

  29. Baughman, R.H.: Avoiding the shrink. Nature 425, 667 (2003)

    Article  Google Scholar 

  30. Gibson, L.J., Ashby, M.F., Schajer, G.S., Robertson, C.I.: The mechanics of two-dimensional cellular materials. Proc. Roy. Soc. Lond. Mater. 382, 25–42 (1982)

    Google Scholar 

  31. Fang, X.Q., Zhu, C.S., Liu, J.X., Liu, X.L.: Surface energy effect on free vibration of nano-sized piezoelectric double-shell structures. Phys. B 529, 41–56 (2018)

    Article  Google Scholar 

  32. Fan, T.: Nano porous piezoelectric energy harvester by surface effect model. Mech. Adv. Mater. Struct. 27, 754–760 (2020)

    Article  Google Scholar 

  33. Xu, F.F., Fang, F.Z., Zhu, Y.Q., Zhang, X.D.: Study on crystallographic orientation effect on surface generation of aluminum in nano-cutting. Nanoscale Res. Lett. 12, 289 (2017)

    Article  Google Scholar 

  34. Xia, W., Mahmood, A., Zou, R.Q., Xu, Q.: Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci. 8, 1837–1866 (2015)

    Article  Google Scholar 

  35. Kaneti, Y.V., Tang, J., Salunkhe, R.R., Jiang, X.C., Yu, A.B., Wu, K.C.W., et al.: Nanoarchitectured design of porous materials and nanocomposites from metal-organic frameworks. Adv. Mater. 29, 12 (2017)

    Article  Google Scholar 

  36. Dickinson, M.: Animal locomotion: how to walk on water. Nature 424, 621–622 (2003)

    Article  Google Scholar 

  37. Feng, L., Li, S.H., Li, Y.S., Li, H.J., Zhang, L.J., Zhai, J., et al.: Super-hydrophobic surfaces: from natural to artificial. Adv. Mater. 14, 1857–1860 (2002)

    Article  Google Scholar 

  38. Roach, P., Shirtcliffe, N.J., Newton, M.I.: Progess in superhydrophobic surface development. Soft Matter 4, 224–240 (2008)

    Article  Google Scholar 

  39. Arzt, E.: Overview no130: size effects in materials due to microstructural and dimensional constraints: a comparative review. Acta Mater. 46, 5611–5626 (1998)

    Article  Google Scholar 

  40. Gao, H.J., Ji, B.H., Jager, I.L., Arzt, E., Fratzl, P.: Materials become insensitive to flaws at nanoscale: Lessons from nature. Proc. Natl. Acad. Sci. USA 100, 5597–5600 (2003)

    Article  Google Scholar 

  41. Kraft, O., Gruber, P.A., Monig, R., Weygand, D.: Plasticity in confined dimensions. Annu. Rev. Mater. Res. 40, 293–317 (2010)

    Article  Google Scholar 

  42. Greer, J.R., De Hosson, J.T.M.: Plasticity in small-sized metallic systems: intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56, 654–724 (2011)

    Article  Google Scholar 

  43. Ban, Y.X., Mi, C.W.: Analytical solutions of a spherical nanoinhomogeneity under far-field unidirectional loading based on Steigmann-Ogden surface model. Math. Mech. Solids 25, 1904–1923 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  44. Manoharan, M.P., Lee, H., Rajagopalan, R., Foley, H.C., Haque, M.A.: Elastic properties of 4–6 nm-thick glassy carbon thin films. Nanoscale Res. Lett. 5, 14–19 (2010)

    Article  Google Scholar 

  45. Lee, C., Wei, X.D., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)

    Article  Google Scholar 

  46. Mathur, A., Erlebacher, J.: Size dependence of effective Young’s modulus of nanoporous gold. Appl. Phys. Lett. 90, 061910 (2007)

    Article  Google Scholar 

  47. Liu, J.L., Mei, Y., Xia, R., Zhu, W.L.: Large displacement of a static bending nanowire with surface effects. Phys. E 44, 2050–2055 (2012)

    Article  Google Scholar 

  48. Biener, J., Hodge, A.M., Hamza, A.V., Hsiung, L.M., Satcher, J.H.: Nanoporous Au: a high yield strength material. J. Appl. Phys. 97, 024301 (2005)

    Article  Google Scholar 

  49. Biener, J., Hodge, A.M., Hayes, J.R., Volkert, C.A., Zepeda-Ruiz, L.A., Hamza, A.V., et al.: Size effects on the mechanical behavior of nanoporous Au. Nano Lett. 6, 2379–2382 (2006)

    Article  Google Scholar 

  50. Khorshidvand, A.R., Joubaneh, E.F., Jabbari, M., Eslami, M.R.: Buckling analysis of a porous circular plate with piezoelectric sensor-actuator layers under uniform radial compression. Acta Mech. 225, 179–193 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  51. Huth, M., Kolb, F., Plank, H.: Dielectric sensing by charging energy modulation in a nano-granular metal. Appl. Phys. A Mater. 117, 1689–1696 (2014)

    Article  Google Scholar 

  52. Mojahedin, A., Joubaneh, E.F., Jabbari, M.: Thermal and mechanical stability of a circular porous plate with piezoelectric actuators. Acta Mech. 225, 3437–3452 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  53. Zhao, Q.S., Papadopoulos, P.: Continuum modeling and simulation of multiphase diffusion through a porous solid. Math. Mech. Solids 20, 251–267 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  54. Gurtin, M.E., Murdoch, A.I.: Continuum theory of elastic-material surfaces. Arch. Ration Mech. An 57, 291–323 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  55. Gurtin, M.E., Weissmuller, J., Larche, F.: A general theory of curved deformable interfaces in solids at equilibrium. Philos. Mag. A 78, 1093–1109 (1998)

    Article  Google Scholar 

  56. Sun, K., Shi, J., Ma, L.: Atomistic insights into the effects of residual stress during nanoindentation. Curr. Comput.-Aided Drug Des. 7, 240 (2017)

    Google Scholar 

  57. Shenoy, V.B.: Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Phys. Rev. B 71, 094104 (2005)

    Article  Google Scholar 

  58. Gupta, R., Rai, B.: Effect of size and surface charge of gold nanoparticles on their skin permeability: a molecular dynamics study. Sci. Rep. UK 7, 45292 (2017)

    Article  Google Scholar 

  59. Surblys, D., Kawagoe, Y., Shibahara, M., Ohara, T.: Molecular dynamics investigation of surface roughness scale effect on interfacial thermal conductance at solid-liquid interfaces. J. Chem. Phys. 150, 114705 (2019)

    Article  Google Scholar 

  60. Chen, C.Q., Shi, Y., Zhang, Y.S., Zhu, J., Yan, Y.J.: Size dependence of Young's modulus in ZnO nanowires. Phys. Rev. Lett. 96 (2006)

  61. He, J., Lilley, C.M.: Surface effect on the elastic behavior of static bending nanowires. Nano Lett. 8, 1798–1802 (2008)

    Article  Google Scholar 

  62. Wang, Z.Q., Zhao, Y.P., Huang, Z.P.: The effects of surface tension on the elastic properties of nano structures. Int. J. Eng. Sci. 48, 140–150 (2010)

    Article  Google Scholar 

  63. Feng, X.Q., Xia, R., Li, X., Li, B.: Surface effects on the elastic modulus of nanoporous materials. Appl. Phys. Lett. 94, 011916 (2009)

    Article  Google Scholar 

  64. Fang, Q.H., Zhao, L., Li, J.: Surface effects on the elastic modulus of regular polygonal prism nanoporous materials. Acta Mech. 231, 3451–3460 (2020)

    Article  MathSciNet  Google Scholar 

  65. Xia, R., Li, X.D., Qin, Q.H., Liu, J.L., Feng, X.Q.: Surface effects on the mechanical properties of nanoporous materials. Nanotechnology 22, 265714 (2011)

    Article  Google Scholar 

  66. Chen, Y., Liu, Y., Fang, Q., Li, J., Liu, Y., Liaw, P.K.: An unified model for dislocations interacting with complex-shape voids in irradiated metals. Int. J. Mech. Sci. 185, 105689 (2020)

    Article  Google Scholar 

  67. Zhang, C., Lu, C., Michal, G., Li, J., Wang, R.: Strong strain hardening in graphene/nanotwinned metal composites revealed by molecular dynamics simulations. Int. J. Mech. Sci. 2021, 106460 (2021)

    Article  Google Scholar 

  68. Zhang, R., Wen, L.H., Xiao, J.Y., Qian, D.: An efficient solution algorithm for space-time finite element method. Comput. Mech. 63, 455–470 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  69. Niu, R.P., Liu, G.R., Yue, J.H.: Development of a software package of smoothed finite element method (S-FEM) for solid mechanics problems. Int. J. Comp. Meth-Sing. 17, 1845004 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  70. Boso, D.P., Braga, T., Ravasini, S., Skrbic, T., Puglisi, A., Pinato, O., et al.: An integrated DEM–FEM approach to study breakage in packing of glass cartridges on a conveyor belt. Granul. Matter. 22, 73 (2020)

    Article  Google Scholar 

  71. Vabishchevich, M.O., Solodei, I.I., Chepurnaya, E.A.: Determining the parameters of linear fracture mechanics in dynamic problems based on semianalytical finite-element method. Int. Appl. Mech. 54, 653–659 (2018)

    Article  MathSciNet  Google Scholar 

  72. Mi, C.: Surface mechanics induced stress disturbances in an elastic half-space subjected to tangential surface loads. Eur. J. Mech. A Solids 65, 59–69 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  73. Mi, C.: Elastic behavior of a half-space with a Steigmann-Ogden boundary under nanoscale frictionless patch loads. Int. J. Eng. Sci. 129, 129–144 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  74. Tian, L., Rajapakse, R.K.N.D.: Finite element modelling of nanoscale inhomogeneities in an elastic matrix. Comput. Mater. Sci. 41, 44–53 (2007)

    Article  Google Scholar 

  75. He, J., Park, H.S.: A methodology for modeling surface effects on stiff and soft solids. Comput. Mech. 61, 687–697 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  76. Zheng, X.P., Cao, Y.P., Li, B., Feng, X.Q., Wang, G.F.: Surface effects in various bending-based test methods for measuring the elastic property of nanowires. Nanotechnology 21, 205702 (2010)

    Article  Google Scholar 

  77. Goudarzi, T., Avazmohammadi, R., Naghdabadi, R.: Surface energy effects on the yield strength of nanoporous materials containing nanoscale cylindrical voids. Mech. Mater. 42, 852–862 (2010)

    Article  Google Scholar 

  78. Moshtaghin, A.F., Naghdabadi, R., Asghari, M.: Effects of surface residual stress and surface elasticity on the overall yield surfaces of nanoporous materials with cylindrical nanovoids. Mech. Mater. 51, 74–87 (2012)

    Article  Google Scholar 

  79. Kim, G.T., Waizmann, U., Roth, S.: Simple efficient coordinate markers for investigating synthetic nanofibers. Appl. Phys. Lett. 79, 3497–3499 (2001)

    Article  Google Scholar 

  80. Baron, T., Gordon, M., Dhalluin, F., Ternon, C., Ferret, P., Gentile, P.: Si nanowire growth and characterization using a microelectronics-compatible catalyst: PtSi. Appl. Phys. Lett. 89, 233111 (2006)

    Article  Google Scholar 

  81. Sadeghian, H., Yang, C.K., Goosen, J.F.L., van der Drift, E., Bossche, A., French, P.J., et al.: Characterizing size-dependent effective elastic modulus of silicon nanocantilevers using electrostatic pull-in instability. Appl. Phys. Lett. 94, 221903 (2009)

    Article  Google Scholar 

  82. Qiao, L., Zheng, X.J.: Effect of surface stress on the stiffness of micro/nanocantilevers: nanowire elastic modulus measured by nano-scale tensile and vibrational techniques. J. Appl. Phys. 113, 013508 (2013)

    Article  Google Scholar 

  83. Fan, T., Yang, L.H.: Effective Young’s modulus of nanoporous materials with cuboid unit cells. Acta Mech. 228, 21–29 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  84. Lu, Z.X., Xie, F., Liu, Q., Yang, Z.Y.: Surface effects on mechanical behavior of elastic nanoporous materials under high strain. Appl. Math. Mech. Engl. 36, 927–938 (2015)

    Article  MathSciNet  Google Scholar 

  85. Antonopoulos, D.C., Dougalis, V.A.: Galerkin-finite element methods for the shallow water equations with characteristic boundary conditions. Ima. J. Numer. Anal. 37, 266–295 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  86. Singh, S.J., Harsha, S.P.: Thermo-mechanical analysis of porous sandwich S-FGM plate for different boundary conditions using Galerkin Vlasov’s method: a semi-analytical approach. Thin Wall Struct. 150, 106668 (2020)

    Article  Google Scholar 

  87. Cuenot, S., Fretigny, C., Demoustier-Champagne, S., Nysten, B.: Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys. Rev. B 69 (2004)

  88. Li, X.X., Ono, T., Wang, Y.L., Esashi, M.: Ultrathin single-crystalline-silicon cantilever resonators: fabrication technology and significant specimen size effect on Young’s modulus. Appl. Phys. Lett. 83, 3081–3083 (2003)

    Article  Google Scholar 

  89. Nam, C.Y., Jaroenapibal, P., Tham, D., Luzzi, D.E., Evoy, S., Fischer, J.E.: Diameter-dependent electromechanical properties of GaN nanowires. Nano Lett. 6, 153–158 (2006)

    Article  Google Scholar 

  90. Jing, G.Y., Duan, H.L., Sun, X.M., Zhang, Z.S., Xu, J., Li, Y.D., et al.: Surface effects on elastic properties of silver nanowires: contact atomic-force microscopy. Phys. Rev. B 73 (2006)

Download references

Acknowledgements

We acknowledge the support from the National Natural Science Foundation of China (Grant Numbers 11872149 and 12072072) and China Scholarship Council. A.H. Akbarzadeh acknowledges the financial support by Natural Sciences and Engineering Research Council of Canada through NSERC Discovery Grant (RGPIN-2016-0471) and Canada Research Chairs program in Multifunctional Metamaterials.

Funding

This study was funded by the National natural science foundation of China, 11872149, Changwen Mi, 12072072, Changwen Mi, China scholarship council, 202006090226, Yongchao Zhang, natural sciences and engineering research council of Canada, RGPIN-2016-0471, Abdolhamid Akbarzadeh, Canada research chairs, Multifunctional Metamaterials, Abdolhamid Akbarzadeh.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. Mi or A. H. Akbarzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Cai, J., Mi, C. et al. Effect of surface residual stress and surface layer stiffness on mechanical properties of nanowires. Acta Mech 233, 233–257 (2022). https://doi.org/10.1007/s00707-021-03112-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-03112-3

Navigation