Skip to main content
Log in

Piecewise variables separation-based semi-analytical prediction of effective properties for heterogeneous viscoelastic materials

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A novel semi-analytical method in the time domain is proposed to predict the effective properties of heterogeneous viscoelastic composites. By virtue of a temporal series expansion, a piecewise variable separation is realized, and is utilized to formulate a recursive homogenization process, which provides time varying effective strain/stress at a time interval, and can be implemented by M-T, SC methods, or other well-developed spatial homogenization skills. A recursive adaptive algorithm is developed to compute the effective stress and strain, and the temporal inaccuracy caused either by the numerical integral inversion of the integral transformation method, or by the relatively lower truncation order of FDM or improper step size can be avoided. Numerical verification is provided to demonstrate the effectiveness and accuracy of the prediction in comparison with reference solutions obtained by the integral transform method or FEM-based DNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Naik, A., Abolfathi, N., Karami, G., Ziejewski, M.: Micromechanical viscoelastic characterization of fibrous composites. J. Compos. Mater. 42(12), 1179–1204 (2008)

    Article  Google Scholar 

  2. Sabar, H., Berveiller, M., Favier, V., Berbenni, S.: A new class of micro-macro models for elastic-viscoplastic heterogeneous materials. Int. J. Solids Struct. 39(12), 2357–3276 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Hashin, Z.: Viscoelastic behavior of heterogeneous media. J. Appl. Mech. 32, 37 (1964). https://doi.org/10.1115/1.3627270

    Article  Google Scholar 

  4. Mandel, J.: Cours de mécanique des milieux continus.

  5. Barbero, E.J., Luciano, R.: Micromechanical formulas for the relaxation tensor of linear viscoelastic composites with transversely isotropic fibers. Int. J. Solids Struct. 32(13), 1859–1872 (1995)

    Article  MATH  Google Scholar 

  6. Yancey, R.N., Pindera, M.J.: Micromechanical analysis of the creep response of unidirectional composites. J. Eng. Mater. Technol. 112(2), 157–163 (1990)

    Article  Google Scholar 

  7. Li, K., Gao, X.L., Roy, A.K.: Micromechanical modeling of viscoelastic properties of carbon nanotube-reinforced polymer composites. Mech. Compos. Mater. Struct. 13(4), 317–328 (2006)

    Article  Google Scholar 

  8. Wang, Y.M., Weng, G.J.: The influence of inclusion shape on the overall viscoelastic behavior of composites. J. Appl. Mech. 59(3), 510–518 (1992)

    Article  MATH  Google Scholar 

  9. Haasemann, G., Ulbricht, V.: Numerical evaluation of the viscoelastic and viscoplastic behavior of composites. Tech. Mech. 30(1–3), 122–135 (2010)

    Google Scholar 

  10. Megnis, M., Varna, J., Allen, D.H., Holmberg, A.: Micromechanical modeling of viscoelastic response of GMT composite. J. Compos. Mater. 35(10), 849–882 (2001)

    Article  Google Scholar 

  11. Hashin, Z.: Complex moduli of viscoelastic composites—I. General theory and application to particulate composites. Int. J. Solids Struct. 6(5), 539–552 (1970)

    Article  MATH  Google Scholar 

  12. Hashin, Z.: Viscoelastic fiber reinforced materials. AIAA J. 4(8), 1411–1417 (1966)

    Article  MATH  Google Scholar 

  13. Christensen, R.M.: Viscoelastic properties of heterogeneous media. J. Mech. Phys. Solids 17(1), 23–41 (1969)

    Article  Google Scholar 

  14. Aigner, E., Lackner, R., Pichler, C.: Multiscale prediction of viscoelastic properties of asphalt concrete. J. Mater. Civ. Eng. 21(12), 771–780 (2009)

    Article  Google Scholar 

  15. Lukas, E., Christian, H., Stefan, S.: Layered water in crystal interfaces as source for bone viscoelasticity: arguments from a multiscale approach. Comput. Methods Biomech. Biomed. Eng. 17(1), 48–63 (2014)

    Article  Google Scholar 

  16. Cruz González, O. L., Rodríguez-Ramos, R., Bravo-Castillero, J., Martínez-Rosado, R., Guinovart-Díaz, R., Otero, J., Sabina, F.: Effective viscoelastic properties of one-dimensional composites. Am. Res. J. Phys. (ARJPS) 2, 17 p (2017)

  17. Suquet, P.: Four exact relations for the effective relaxation function of linear viscoelastic composites. C. R. Méc. 340(4–5), 387–399 (2012)

    Article  Google Scholar 

  18. Hoang-Duc, H., Bonnet, G.: A series solution for the effective properties of incompressible viscoelastic media. Int. J. Solids Struct. 51(2), 381–391 (2014)

    Article  Google Scholar 

  19. Ichikawa, Y., Kawamura, K., Uesugi, K.: Micro- and macrobehavior of granitic rock: observations and viscoelastic homogenization analysis. Comput. Methods Appl. Mech. Eng. 191(1/2), 47–72 (2001)

    Article  MATH  Google Scholar 

  20. Liu, S., Chen, K.Z., Feng, X.A.: Prediction of viscoelastic property of layered materials. Int. J. Solids Struct. 41(13), 3675–3688 (2004)

    Article  MATH  Google Scholar 

  21. Ma, N., Liu, S.: Study on the thermal stress relaxation and constitutive equations of viscoelastic composite materials, part II: numerical simulation. Fuhe Cailiao Xuebao/Acta Mater. Compos. Sin. 22(1), 158–163 (2005)

    Google Scholar 

  22. Honorio, T., Bary, B., Sanahuja, J., Benboudjema, F.: Effective properties of n-coated composite spheres assemblage in an ageing linear viscoelastic framework. Int. J. Solids Struct. 124, 1–13 (2017). https://doi.org/10.1016/j.ijsolstr.2017.04.028

    Article  Google Scholar 

  23. Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 241(1226), 376–396 (1957)

    MathSciNet  MATH  Google Scholar 

  24. Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21(5), 571–574 (1973)

    Article  Google Scholar 

  25. Benveniste, Y.: A new approach to the application of Mori–Tanaka’s theory in composite materials. Mech. Mater. 6(2), 147–157 (1987)

  26. Hill, R.: A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 13(4), 213–222 (1965). https://doi.org/10.1016/0022-5096(65)90010-4

    Article  Google Scholar 

  27. Nguyen, S.T., Vu, M.B., Vu, M.N., To, Q.D.: A homogenization approach for the effective drained viscoelastic properties of 2d porous media and an application for cortical bone. J. Mech. Behav. Biomed. Mater. 78, 134–142 (2017)

    Article  Google Scholar 

  28. Lahellec, N., Suquet, P.: Effective behavior of linear viscoelastic composites: a time-integration approach. Int. J. Solids Struct. 44(2), 507–529 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tian, T., Felicelli, S.D.: Effective creep response and uniaxial tension behavior of linear visco-elastic polymer composites.

  30. Barthélémy, J.F., Giraud, A., Lavergne, F., Sanahuja, J.: The Eshelby inclusion problem in ageing linear viscoelasticity. Int. J. Solids Struct. 97–98, 530–542 (2016)

    Article  Google Scholar 

  31. Nguyen, S.-T.: Effect of pore shape on the effective behavior of viscoelastic porous media. Int. J. Solids Struct. 125, 161–171 (2017)

    Article  Google Scholar 

  32. Luciano, R., Barbero, E.J.: Analytical expressions for the relaxation moduli of linear viscoelastic composites with periodic microstructure. J. Appl. Mech. 62(3), 786–793 (1995)

    Article  MATH  Google Scholar 

  33. Hofer, U., Luger, M., Traxl, R., Lackner, R.: Closed-form expressions for effective viscoelastic properties of fiber-reinforced composites considering fractional matrix behavior. Mech. Mater.

  34. Hoang-Duc, H., Bonnet, G., Meftah, F.: Generalized self-consistent scheme for the effective behavior of viscoelastic heterogeneous media: a simple approximate solution. Eur. J. Mech. 39(5), 35–49 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Allen, D., Yoon, C.: Homogenization techniques for thermoviscoelastic solids containing cracks. Int. J. Solids Struct. 35(31–32), 4035–4053 (1998). https://doi.org/10.1016/s0020-7683(97)00299-0

    Article  MathSciNet  MATH  Google Scholar 

  36. Sanahuja, J.: Effective behaviour of ageing linear viscoelastic composites: homogenization approach. Int. J. Solids Struct. 50(19), 2846–2856 (2013)

    Article  Google Scholar 

  37. Lavergne, F., Sab, K., Sanahuja, J., Bornert, M., Toulemonde, C.: Homogenization schemes for aging linear viscoelastic matrix-inclusion composite materials with elongated inclusions. Int. J. Solids Struct. 80, 545–560 (2016)

    Article  Google Scholar 

  38. Chung, P.W., Tamma, K.K., Namburu, R.R.: A micro/macro homogenization approach for viscoelastic creep analysis with dissipative correctors for heterogeneous woven-fabric layered media. Compos. Sci. Technol. 60(12), 2233–2253 (2000)

    Article  Google Scholar 

  39. Seck, M.E.B., Garajeu, M., Masson, R.: Effective nonlinear viscoelastic behaviour of particulate composites under isotropic loading. Eur. J. Mech. A/Solids. https://hal.archives-ouvertes.fr/hal-01653258

  40. Noh, J., Whitcomb, J.: Efficient techniques for predicting viscoelastic behavior of sublaminates. Compos. B Eng. 34(8), 727–736 (2003). https://doi.org/10.1016/s1359-8368(03)00082-9

    Article  Google Scholar 

  41. Muliana, A., Kim, J.S.: A concurrent micromechanical model for predicting nonlinear viscoelastic responses of composites reinforced with solid spherical particles. Int. J. Solids Struct. 44(21), 6891–6913 (2007)

    Article  MATH  Google Scholar 

  42. Yi, Y.M., Park, S.M., Youn, S.K.: Asymptotic homogenization of viscoelastic composites with periodic microstructures. Int. J. Solids Struct. 35(17), 2039–2055 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  43. Liu, W.H., Zhang, X.M., Zhang, C.Y.: Asymptotic homogenization of viscoelastic composites. Eng. Mech. 22(6), 63–68 (2005)

    Google Scholar 

  44. Liu, W.H., Zhang, X.M., Zhang, C.Y.: Application of homogenization theory to viscoelastic multilayered composites. Chin. J. Comput. Mech. 22(6), 722–727 (2005)

    Google Scholar 

  45. Liu, S., Ma, N.: Study on the thermal stress relaxation and constitutive equations of viscoelastic composite materials, part I: general theory. Acta Mater. Compos. Sin. 22(1), 152–157 (2005)

    Google Scholar 

  46. Rodríguez-Ramos, R., Otero, J.A., Cruz-González, O., Guinovart-Díaz, R., Sevostianov, I.: Computation of the relaxation effective moduli for fibrous viscoelastic composites using the asymptotic homogenization method. Int. J. Solids Struct. 190

  47. Otero, J.A., Rodríguez-Ramos, R., Guinovart-Díaz, R., Cruz-González, O.L., Sabina, F.J., Berger, H., Böhlke, T.: Asymptotic and numerical homogenization methods applied to fibrous viscoelastic composites using Prony’s series. Acta Mech. 231(7), 2761–2771 (2020). https://doi.org/10.1007/s00707-020-02671-1

  48. Cruz-González, O., Rodríguez-Ramos, R., Otero, J., Ramírez-Torres, A., Penta, R., Lebon, F.: On the effective behavior of viscoelastic composites in three dimensions. Int. J. Eng. Sci. 157, 103377 (2020). https://doi.org/10.1016/j.ijengsci.2020.103377

    Article  MathSciNet  MATH  Google Scholar 

  49. Cruz-González, O., Ramírez-Torres, A., Rodríguez-Ramos, R., Otero, J., Penta, R., Lebon, F.: Effective behavior of long and short fiber-reinforced viscoelastic composites. Appl. Eng. Sci. 6, 100037 (2021). https://doi.org/10.1016/j.apples.2021.100037

    Article  Google Scholar 

  50. Tian, T., Felicelli, S.D.: Computational evaluation of effective stress relaxation behavior of polymer composites. Int. J. Eng. Sci. 90, 76–85 (2015)

    Article  Google Scholar 

  51. Chung, P.W., Tamma, K.K., Namburu, R.R.: A finite element thermo-viscoelastic creep approach for heterogeneous structures with dissipative correctors. Finite Elem. Anal. Des. 36(3–4), 279–313 (2000). https://doi.org/10.1016/s0168-874x(00)00037-8

    Article  MATH  Google Scholar 

  52. Ruo-Jing, Z., Wei, H.E., Zhen-Yu, X.U. :Viscoelastic parameters of fiber reinforced plastics. J. Tongji Univ

  53. Zhenyu, X.: The viscoelastic response of fiber-reinforced composite material. Chin. J. Appl. Mech

  54. Gusev, A.A.: Time domain finite element estimates of dynamic stiffness of viscoelastic composites with stiff spherical inclusions. Int. J. Solids Struct. 88–89, 79–87 (2016). https://doi.org/10.1016/j.ijsolstr.2016.03.021

    Article  Google Scholar 

  55. Bensoussan, A., Lions, J.-L., Papanicolaou, G., Caughey, T.K.: Asymptotic analysis of periodic structures. J. Appl. Mech. 46(2), 477–477 (1979). https://doi.org/10.1115/1.3424588

    Article  Google Scholar 

  56. Sanchez-Palencia, E.: Non-Homogeneous Media and Vibration Theory. Springer, Berlin (1980). https://doi.org/10.1007/3-540-10000-8

    Book  MATH  Google Scholar 

  57. Vu-Bac, N., Bessa, M.A., Rabczuk, T., Liu, W.K.: A multiscale model for the quasi-static thermo-plastic behavior of highly cross-linked glassy polymers. Macromolecules, 150910071355000 (2015)

  58. Bai, X., Bessa, M.A., Melro, A.R., Camanho, P.P., Guo, L., Liu, W.K.: High-fidelity micro-scale modeling of the thermo-visco-plastic behavior of carbon fiber polymer matrix composites. Compos. Struct. 134, 132–141 (2015)

    Article  Google Scholar 

  59. Cornet, J., Dabrowski, M., Schmid, D.: Viscoelastic effective properties of two types of heterogeneous materials

  60. Jia, X., Xia, Z., Gu, B.: Nonlinear viscoelastic multi-scale repetitive unit cell model of 3d woven composites with damage evolution. Int. J. Solids Struct. 50(22–23), 3539–3554 (2013). https://doi.org/10.1016/j.ijsolstr.2013.06.020

    Article  Google Scholar 

  61. Li, H., Zhang, B., Bai, G.: Effects of constructing different unit cells on predicting composite viscoelastic properties. Compos. Struct. 125, 459–466 (2015). https://doi.org/10.1016/j.compstruct.2015.02.028

    Article  Google Scholar 

  62. Lavergne, F., Sab, K., Sanahuja, J., Bornert, M., Toulemonde, C.: Investigation of the effect of aggregates’ morphology on concrete creep properties by numerical simulations. Cem. Concr. Res. 71, 14–28 (2015)

  63. Hu, A., Li, X., Ajdari, A., Bing, J., Brinson, L.C.: Computational analysis of particle reinforced viscoelastic polymer nanocomposites—statistical study of representative volume element. J. Mech. Phys. Solids 114

  64. Honorio, T., Bary, B., Sanahuja, J.: Effective ageing linear viscoelastic properties of composites with phase precipitation: comparisons between numerical and analytical homogenization approaches. In: Proceedings of the 9th International Conference on Fracture Mechanics of Concrete and Concrete Structures, IA-FraMCoS, 2016. https://doi.org/10.21012/fc9.228

  65. Pallicity, T.D., Böhlke, T.: Effective viscoelastic behavior of polymer composites with regular periodic microstructures. Int. J. Solids Struct. 216, 167–181 (2021). https://doi.org/10.1016/j.ijsolstr.2021.01.016

    Article  Google Scholar 

  66. Hu, A., Li, X., Ajdari, A., Jiang, B., Burkhart, C., Chen, W., Brinson, L.C.: Computational analysis of particle reinforced viscoelastic polymer nanocomposites—statistical study of representative volume element. J. Mech. Phys. Solids 114, 55–74 (2018)

    Article  Google Scholar 

  67. Christensen, R.M., Freund, L.B.: Theory of Viscoelasticity. Academic Press, London (1982)

    Google Scholar 

  68. Toshio, Micromechanics of Defects in Solids (1987)

  69. Chou, T.W., Nomura, S., Taya, M.: A self-consistent approach to the elastic stiffness of short-fiber composites. J. Comput. Mech. 14(3), 178–188 (1980)

    Google Scholar 

  70. Zhang, L., Yang, H.: A 2-d numerical analysis for the structure composed by viscoelastic functionally graded materials using a temporally piecewise adaptive algorithm. Appl. Math. Model. 81, 441–456 (2020). https://doi.org/10.1016/j.apm.2020.01.015

    Article  MathSciNet  MATH  Google Scholar 

  71. Friebel, C., Doghri, I., Legat, V.: General mean-field homogenization schemes for viscoelastic composites containing multiple phases of coated inclusions. Int. J. Solids Struct. 43(9), 2513–2541 (2006). https://doi.org/10.1016/j.ijsolstr.2005.06.035

    Article  MATH  Google Scholar 

  72. Li, Q., Chen, W., Liu, S., Wang, J.: A novel implementation of asymptotic homogenization for viscoelastic composites with periodic microstructures. Compos. Struct. 208, 276–286 (2019). https://doi.org/10.1016/j.compstruct.2018.09.056

    Article  Google Scholar 

Download references

Acknowledgements

The research leading to this paper is funded by the National Natural Science Foundation of China [11972109, 11572068, 11572077] and National Key Basic Research and Development Program of China [2015CB057804].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitian Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Q., He, Y., Guo, J. et al. Piecewise variables separation-based semi-analytical prediction of effective properties for heterogeneous viscoelastic materials. Acta Mech 233, 579–596 (2022). https://doi.org/10.1007/s00707-021-03099-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-03099-x

Navigation