Skip to main content
Log in

Wave propagation and attenuation in time in local thermal non-equilibrium triple porosity thermoelastic medium

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper addresses the wave propagation problem within the context of the theory of materials with triple porosity under local thermal non-equilibrium. The time-harmonic wave solution is studied and the dispersion relation is explicitly established as an eighth-degree algebraic equation. It is shown that there are two shear waves undamped in time, that are non-dispersive and unaltered by the presence of the pore system or by thermal effects. Also, there are seven longitudinal wave solutions that are dispersive and damped in time: one longitudinal quasi-elastic wave, three longitudinal quasi-pore standing waves and three other longitudinal quasi-thermal standing waves. An illustrative simulation on a material like Berea sandstone shows that the effects of coupling triple porosity with local thermal imbalance and mechanical deformations leads to an increase in the propagation speed of the longitudinal quasi-elastic wave accompanied by an increase in its rate of decrease over time, as well as to a relaxation of the decrease in time for the quasi-pore and quasi-thermal standing waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–165 (1941)

    Article  Google Scholar 

  2. Biot, M.A.: Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26, 182–185 (1955)

    Article  MathSciNet  Google Scholar 

  3. Biot, M.A.: General solutions of the equations of elasticity and consolidation for a porous material. J. Appl. Mech. 78, 91–96 (1956)

    Article  MathSciNet  Google Scholar 

  4. Biot, M.A.: Theory of propagation of elastic waves in a fluid saturated porous solid. J. Acoust. Soc. Am. 28, 168–191 (1956)

    Article  Google Scholar 

  5. Cheng, A.H.D.: Poroelasticity. Springer, Switzerland (2016)

    Book  Google Scholar 

  6. Barenblatt, G.I., Zheltov, Y.P., Kochina, I.N.: Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks (strata). J. Appl. Math. Mech. 24, 1286–1303 (1960)

    Article  Google Scholar 

  7. Barenblatt, G.I.: On some boundary-value problems for the equation of filtration of fluid in fissurized rocks. Prikladnaya Matematika i Mekhanika, 27, No. 2, pp. 348–350 (1963) (in Russian); J. Appl. Math. Mech. (PMM) 27(2), 513–518 (1963) (English Translation). https://doi.org/10.1016/0021-8928(63)90017-0

  8. Wilson, R.K., Aifantis, E.C.: On the theory of consolidation with double porosity. Int. J. Eng. Sci. 20(9), 1009–1035 (1982). https://doi.org/10.1016/0020-7225(82)90036-2

    Article  MATH  Google Scholar 

  9. Wilson, R.K., Aifantis, E.C.: A double porosity model for acoustic wave propagation in fractured-porous rock. Int. J. Eng. Sci. 22(8–10), 1209–1217 (1984). https://doi.org/10.1016/0020-7225(84)90124-1

    Article  MATH  Google Scholar 

  10. Beskos, D.E.: Dynamics of saturated rocks. I: equations of motion. J. Eng. Mech. ASCE 115(5), 982–995 (1989). https://doi.org/10.1061/(ASCE)0733-9399

    Article  Google Scholar 

  11. Beskos, D.E., Vgenopoulou, I., Providakis, C.P.: Dynamics of saturated rocks. II: body waves. J. Eng. Mech. ASCE 115(5), 996–1016 (1989). https://doi.org/10.1061/(ASCE)0733-9399

    Article  Google Scholar 

  12. Beskos, D.E., Papadakis, C.N.: Dynamics of saturated rocks. III: Rayleigh waves. J. Eng. Mech. ASCE 115(5), 1017–1033 (1989). https://doi.org/10.1061/(ASCE)0733-9399

    Article  Google Scholar 

  13. Vgenopoulou, I., Beskos, D.E.: Dynamics of saturated rocks. IV: column and borehole problems. J. Eng. Mech. ASCE 118(9), 1795–1813 (1992). https://doi.org/10.1061/(ASCE)0733-9399(1992)118:9(1795)

    Article  MATH  Google Scholar 

  14. Auriault, J.L., Boutin, C.: Deformable porous media with double porosity III: acoustics. Transp. Porous Media 14, 143–162 (1994). https://doi.org/10.1007/BF00615198

    Article  Google Scholar 

  15. Olny, X., Boutin, C.: Acoustic wave propagation in double porosity media. J. Acoust. Soc. Am. 114(1), 73–89 (2003). https://doi.org/10.1121/1.1534607

    Article  Google Scholar 

  16. Boutin, C., Royer, P.: On models of double porosity poroelastic media. Geophys. J. Int. 203, 1694–1725 (2015). https://doi.org/10.1093/gji/ggv378

    Article  Google Scholar 

  17. Pride, S.R., Berryman, J.G.: Linear dynamics of double-porosity dual-permeability materials. I. Governing equations and acoustic attenuation. Phys. Rev. E 68, 036603 (2003). https://doi.org/10.1103/PhysRevE.68.036603

    Article  MathSciNet  Google Scholar 

  18. Pride, S.R., Berryman, J.G.: Linear dynamics of double-porosity dual-permeability materials. II. Fluid transport equations. Phys. Rev. E 68, 036604 (2003). https://doi.org/10.1103/PhysRevE.68.036604

    Article  MathSciNet  Google Scholar 

  19. Al-Ahmadi, H.A.: A triple-porosity model for fractured horizontal wells. Master’s thesis, Texas A&M University (2010). http://hdl.handle.net/1969.1/ETD-TAMU-2010-08-8545. Accessed 1 April 2021

  20. Al-Ahmadi, H.A., Wattenbarger, R.A.: Triple-porosity models: one further step towards capturing fractured reservoirs heterogeneity. In: SPE/DGS Saudi Arabia section technical symposium and exhibition. Society of Petroleum Engineers (2011). https://doi.org/10.2118/149054-MS. Accessed 1 April 2021

  21. Tivayanonda, V., Apiwathanasorn, S., Economides, C., Wattenbarger, R.: Alternative interpretations of shale gas/oil rate behavior using a triple porosity model. SPE-159703-MS, Society of Petroleum Engineers (2012). https://doi.org/10.2118/159703-MS. Accessed 1 April 2021

  22. Deng, J.H., Leguizamon, J.A., Aguilera, R.: Petrophysics of triple-porosity tight gas reservoirs with a link to gas productivity. SPE Reserv Eval Eng 14, 566–577 (2011). https://doi.org/10.2118/144590-PA

    Article  Google Scholar 

  23. Shackelford, C.D.: Contaminant transport. In: Daniel, D.E. (ed.) Geotechnical Practice for Waste Disposal, pp. 33–65. Chapman and Hall, London (1993)

    Chapter  Google Scholar 

  24. Gwo, J.P., Jardine, P.M., Wilson, G.V., Yeh, G.T.: A multiple-pore-region concept to modeling mass transfer in subsurface media. J. Hydrol. 164, 217–237 (1995). https://doi.org/10.1016/0022-1694(94)02555-P

    Article  Google Scholar 

  25. Moutsopoulos, K.N., Konstantinidis, A.A., Meladiotis, I., Tzimopoulos, Ch.D., Aifantis, E.C.: Hydraulic behavior and contaminant transport in multiple porosity media. Transp. Porous Media 42, 265–292 (2001). https://doi.org/10.1023/A:1006745924508

    Article  Google Scholar 

  26. Müller, T.M., Gurevich, B., Lebedev, M.: Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks - a review. Geophysics 75, 75A147-75A164 (2010). https://doi.org/10.1190/1.3463417

    Article  Google Scholar 

  27. Pride, S.R.: Relationships between seismic and hydrological properties. In: Rubin, Y., Hubbard, S.S. (eds.) Hydrogeophysics. Water Science and Technology Library, vol. 50. Springer, Dordrecht (2005). https://doi.org/10.1007/1-4020-3102-5-9

    Chapter  Google Scholar 

  28. Parotidis, M., Rothert, E., Shapiro, S.A.: Pore-pressure diffusion: A possible triggering mechanism for the earthquake swarms \(2000\) in Vogtland/NW/Bohemia. Central Europe. Geophys. Res. Lett. 30(20), 2075 (2003). https://doi.org/10.1029/2003GL018110

    Article  Google Scholar 

  29. Abdassah, D., Ershaghi, I.: Triple-porosity systems for representing naturally fractured reservoirs. SPE Form. Eval. 1, 113–127 (1986). https://doi.org/10.2118/13409-PA

    Article  Google Scholar 

  30. Bai, M., Elsworth, D., Roegiers, J.C.: Multiporosity/multipermeability approach to the simulation of naturally fractured reservoirs. Water Resour. Res. 29, 1621–1633 (1993). https://doi.org/10.1029/92WR02746

    Article  Google Scholar 

  31. Bai, M., Roegiers, J.C.: Triple-porosity analysis of solute transport. J. Contam. Hydrol. 28(3), 247–266 (1997). https://doi.org/10.1016/S0169-7722(96)00086-1

    Article  Google Scholar 

  32. Aguilera, R.F., Aguilera, R.: A triple porosity model for petrophysical analysis of naturally fractured reservoirs. Petrophysics 45, 157–166 (2004)

    Google Scholar 

  33. Kuznetsov, A.V., Nield, D.A.: The onset of convection in a tridisperse medium. Int. J. Heat Mass Transf. 54, 3120–3127 (2011). https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.021

    Article  MATH  Google Scholar 

  34. Olusola, B.K., Yu, G., Aguilera, R.: The use of electromagnetic mixing rules for petrophysical evaluation of dual-and triple-porosity reservoirs. SPE Reserv. Eval. Eng. 16, 378–389 (2013). https://doi.org/10.2118/162772-PA

    Article  Google Scholar 

  35. Zou, M., Wei, C., Yu, H., Song, L.: Modelling and application of coalbed methane recovery performance based on a triple porosity/dual permeability model. J. Nat. Gas Sci. Eng. 22, 679–688 (2015). https://doi.org/10.1016/j.jngse.2015.01.019

    Article  Google Scholar 

  36. Desbois, G., Urai, J.L., Hemes, S., Schröppel, B., Schwarz, J.O., Mac, M., Weiel, D.: Multi-scale analysis of porosity in diagenetically altered reservoir sandstone from the Permian Rotliegend (Germany). J. Pet. Sci. Eng. 140, 128–148 (2016). https://doi.org/10.1016/j.petrol.2016.01.019

    Article  Google Scholar 

  37. Said, B., Grandjean, A., Barre, Y., Tancret, F., Fajula, F., Galameau, A.: LTA zeolite monoliths with hierarchical trimodal porosity as highly efficient microreactors for strontium capture in continuous flow. Microporous Mesoporous Mater. 232, 39–52 (2016). https://doi.org/10.1016/j.micromeso.2016.05.036

    Article  Google Scholar 

  38. Liu, C., Abousleiman, Y.N.: N-porosity and N-permeability generalized wellbore stability analytical solutions and applications. In: 50th U.S. Rock Mechanics/Geomechanics Symposium, 26-29 June, Houston, Texas, American Rock Mechanics Association ARMA-2016-417 [9 pages]

  39. Liu, C., Abousleiman, Y.N.: Multiporosity/multipermeability inclined-wellbore solutions with mudcake effects. SPE J. 23, 1723–1747 (2018). https://doi.org/10.2118/191135-PA

    Article  Google Scholar 

  40. Mehrabian, A., Abousleiman, Y.N.: Multiple-porosity and multiple-permeability poroelasticity: theory and benchmark analytical solution. In: 6th Biot Conference on Poromechanics, Poromechanics 2017—Paris, France, July 9 2017–July 13 2017. pp. 262–271. Paris, France: American Society of Civil Engineers (ASCE) (2017). https://doi.org/10.1061/9780784480779.032

  41. Svanadze, M.: Fundamental solutions in the theory of elasticity for triple porosity materials. Meccanica 51(8), 1825–1837 (2015). https://doi.org/10.1007/s11012-015-0334-6

    Article  MathSciNet  MATH  Google Scholar 

  42. Svanadze, M.: Potential method in the theory of elasticity for triple porosity materials. J. Elast. 130(1), 1–24 (2018). https://doi.org/10.1007/s10659-017-9629-2

    Article  MathSciNet  MATH  Google Scholar 

  43. Svanadze, M.: Potential method in the coupled theory of elastic double-porosity materials. Acta Mech. (2021). https://doi.org/10.1007/s00707-020-02921-2

    Article  MathSciNet  MATH  Google Scholar 

  44. Straughan, B.: Waves and uniqueness in multi-porosity elasticity. J. Therm. Stresses 39(6), 704–721 (2016). https://doi.org/10.1080/01495739.2016.1169136

    Article  Google Scholar 

  45. Straughan, B.: Modelling questions in multi-porosity elasticity. Meccanica 51(12), 2957–2966 (2016). https://doi.org/10.1007/s11012-016-0556-2

    Article  MathSciNet  MATH  Google Scholar 

  46. Straughan, B.: Uniqueness and stability in triple porosity thermoelasticity. Rend. Lincei-Mat. Appl. 28(2), 191–208 (2017). https://doi.org/10.4171/RLM/758

    Article  MathSciNet  MATH  Google Scholar 

  47. Galeş, C., Chiriţă, S.: Wave propagation in materials with double porosity. Mech. Mater. (2020). https://doi.org/10.1016/j.mechmat.2020.103558

    Article  Google Scholar 

  48. Chiriţă, S.: Attenuation of an external signal in a thermoelastic material with triple porosity in local thermal non-equilibrium. J. Therm. Stresses 44(6), 768–783 (2021). https://doi.org/10.1080/01495739.2021.1914529

    Article  Google Scholar 

  49. Straughan, B.: Mathematical Aspects of Multi-Porosity Continua. Advances in Mechanics and Mathematics, Springer, New York (2017)

    Book  Google Scholar 

  50. Svanadze, M.: Potential Method in Mathematical Theories of Multi-porosity Media. Series: Interdisciplinary Applied Mathematics, vol. 51. Springer, Cham (2019)

    Book  Google Scholar 

  51. Svanadze, M.: On the linear theory of double porosity thermoelasticity under local thermal nonequilibrium. J. Therm. Stresses 42(7), 890–913 (2019). https://doi.org/10.1080/01495739.2019.1571973

    Article  Google Scholar 

  52. Franchi, F., Lazzari, B., Nibbi, R., Straughan, B.: Uniqueness and decay in local thermal non-equilibrium double porosity thermoelasticity. Math. Methods Appl. Sci. 41(16), 6763–6771 (2018). https://doi.org/10.1002/mma.5190

    Article  MathSciNet  MATH  Google Scholar 

  53. Chiriţă, S.: Modeling triple porosity under local thermal nonequilibrium. J. Therm. Stresses 43(2), 210–224 (2020). https://doi.org/10.1080/01495739.2019.1679057

    Article  MathSciNet  Google Scholar 

  54. Nield, D.A.: A note on modelling of local thermal non-equilibrium in a structured porous medium. Int. J. Heat Mass Transf. 45(21), 4367–4368 (2002). https://doi.org/10.1016/S0017-9310(02)00138-2

    Article  MATH  Google Scholar 

  55. Rees, D.A.S., Bassom, A.P., Siddheshwar, P.G.: Local thermal non-equilibrium effects arising from the injection of a hot fluid into a porous medium. J. Fluid Mech. 594, 379–398 (2008). https://doi.org/10.1017/S0022112007008890

    Article  MathSciNet  MATH  Google Scholar 

  56. Straughan, B.: Convection with Local Thermal Non-equilibrium and Microfluidic Effects. Advances in Mechanics and Mathematics, vol. 32. Springer, New York (2015)

    Book  Google Scholar 

  57. Jaeger, J.C., Cook, N.G.W., Zimmerman, R.W.: Fundamentals of Rock Mechanics, 4th edn. Blackwell Publishing, Malden (2007)

    Google Scholar 

  58. Khaled, M.Y., Beskos, D.E., Aifantis, E.C.: On the theory of consolidation with double porosity—III A finite element formulation. Int. J. Numer. Anal. Meth. Geomech. 8(2), 101–123 (1984). https://doi.org/10.1002/nag.1610080202

    Article  MATH  Google Scholar 

  59. Coyner, K.B.: Effects of stress, pore pressure, and pore fluids on bulk strain, velocity, and permeability of rocks. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridg1e (1984). https://dspace.mit.edu/handle/1721.1/15367. Accessed 01 April 2021

  60. Shankland, T.J., Johnson, P.A., Hopson, T.M.: Elastic wave attenuation and velocity of Berea sandstone measured in the frequency domain. Geophys. Res. Lett. 20(5), 391–394 (1993). https://doi.org/10.1029/92GL02758

    Article  Google Scholar 

  61. Davis, E.S., Sturtevant, B.T., Sinha, D.N., Pantea, C.: Resonant ultrasound spectroscopy studies of Berea sandstone at high temperature. J. Geophys. Res. Solid Earth 121(9), 6401–6410 (2016). https://doi.org/10.1002/2016jb013410

    Article  Google Scholar 

  62. Davis, E.S.: Anomalous Elastic Behavior in Berea Sandstone. Ph.D. Thesis, University of Houston, Houston, USA (2018). https://uh-ir.tdl.org/uh-ir/bitstream/handle/10657/3638/DAVIS-DISSERTATION-2018.pdf?sequence=1&isAllowed=y Accessed 01 April 2021

  63. Ikeda, K., Goldfarb, E., Tisato, N.: Calculating effective elastic properties of Berea sandstone using the segmentation less method without targets. J. Geophys. Res. Solid Earth 125(6), e2019JB018680 (2020). https://doi.org/10.1029/2019JB018680

  64. Chiriţă, S., Arusoaie, A.: Thermoelastic waves in double porosity materials. Eur. J. Mech. A/Solids (2021). https://doi.org/10.1016/j.euromechsol.2020.104177

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Project STARDUST-R H2020-MSCA-ITN-2018, Grant Agreement No. 813644, Alexandru Ioan Cuza University of Iasi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stan Chiriţă.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiriţă, S., Galeş, C. Wave propagation and attenuation in time in local thermal non-equilibrium triple porosity thermoelastic medium. Acta Mech 232, 4217–4233 (2021). https://doi.org/10.1007/s00707-021-03044-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-03044-y

Mathematics Subject Classification

Navigation