Skip to main content
Log in

Dynamic response of a gradient elastic half-space to a load moving on its surface with constant speed

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The problem of determining the dynamic response of a granular elastic half-space soil medium to a rectangular load moving on its surface is determined analytically. The granular material is modeled as a gradient elastic solid with two material constants in addition to the two classical elastic moduli. These material constants with dimensions of length are the micro-stiffness g and the micro-inertia h coefficients. The rectangular load is uniformly distributed of constant magnitude and moves with constant speed. The resulting three partial differential equations of motion are of the fourth order with respect to the horizontal x, y, and vertical z coordinates and of second order with respect to time t. These equations are solved with the aid of double complex Fourier series involving x, y, t, and the load velocity, which reduce them to a system of three ordinary differential equations of the fourth order with respect to z, which can be easily solved. Use of appropriate classical and non-classical boundary conditions can lead to the solution of the problem. The so obtained solution is used to easily assess by parametric studies the effects of the microstructural parameters g and h as well as the moving load velocity on the various response quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Beskou, N.D., Theodorakopoulos, D.D.: Dynamic effects of moving load pavements: a review. Soil Dyn. Earthq. Eng. 31, 547–567 (2011)

    Article  Google Scholar 

  2. Eason, G.: The stresses produced in semi-infinite solid by a moving surface force. Int. J. Eng. Sci. 2, 581–609 (1965)

    Article  Google Scholar 

  3. Payton, R.G.: Transient motion of an elastic half-space due to a moving surface line load. Int. J. Eng. Sci. 5, 49–79 (1967)

    Article  Google Scholar 

  4. Gakenheimer, D.C., Miklowitz, J.: Transient excitation of an elastic half space by a point load traveling on the surface. J. Appl. Mech. ASME 36, 505–515 (1969)

    Article  Google Scholar 

  5. De Barros, F.C.P., Luco, J.E.: Stresses and displacements in a layered half-space for a moving line load. Appl. Math. Comput. 67, 103–134 (1995)

    MathSciNet  MATH  Google Scholar 

  6. Jones, D.V., Le Houedec, D., Peplow, A.D., Petyt, M.: Ground vibration in vicinity of a moving rectangular load on a half-space. Eur. J. Mech. A/Solids 17, 153–166 (1998)

    Article  Google Scholar 

  7. Grundmann, H., Lieb, M., Trommer, E.: The response of a layered half-space to traffic loads moving along its surface. Arch. Appl. Mech. 69, 55–67 (1999)

    Article  Google Scholar 

  8. Georgiadis, H.G., Lykotrafidis, G.: A method based on the Radon transform for three-dimensional elastodynamic problems of moving loads. J. Elast. 65, 87–129 (2001)

    Article  MathSciNet  Google Scholar 

  9. Liao, W.I., Teng, T.J., Yeh, C.S.: A method for the response of an elastic half-space to moving sub-Rayleigh point loads. J. Sound Vib. 284, 173–188 (2005)

    Article  Google Scholar 

  10. Cao, Y.M., Xia, H., Lombaert, G.: Solution of moving- load- induced soil vibrations based on the Betti-Rayleigh dynamic reciprocal theorem. Soil Dyn. Earthq. Eng. 30, 470–480 (2010)

    Article  Google Scholar 

  11. Ba, Z., Liang, J., Lee, V.W., Ji, H.: 3D dynamic response of a multi-layered transversely isotropic half-space subjected to a moving point load along a horizontal straight line with constant speed. Int. J. Solids Struct. 100–101, 427–445 (2016)

    Article  Google Scholar 

  12. Beskou, N.D., Muho, E.V., Qian, J.: Dynamic analysis of an elastic plate on a cross-anisotropic elastic half-space under a rectangular moving load. Acta Mech. 231, 4735–4759 (2020)

    Article  MathSciNet  Google Scholar 

  13. Muho, E.V.: Dynamic response of an elastic plate on a transversely isotropic viscoelastic half-space with variable with depth moduli to a rectangular moving load. Soil Dyn. Earthq. Eng. 139, 106330 (2020)

    Article  Google Scholar 

  14. Mindlin, R.D.: Micro-structure in linear elasticity. Archiv. Ration. Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  Google Scholar 

  15. Georgiadis, H.G.: The mode III crack problem in microstructured solids governed by dipolar gradient elasticity; static and dynamic analysis. J. Appl. Mech. ASME 70(4), 517–530 (2003)

    Article  Google Scholar 

  16. Zhou, D., Jin, B.: Boussinesq–Flamant problem in gradient elasticity with surface energy. Mech. Res. Commun. 30, 463–468 (2003)

    Article  MathSciNet  Google Scholar 

  17. Li, S., Miskioglu, I., Altan, B.S.: Solution to line loading of a semi-infinite solid in gradient elasticity. Int. J. Solids Struct. 41, 3395–3410 (2004)

    Article  Google Scholar 

  18. Giannakopoulos, A.E.: A reciprocity theorem in linear gradient elasticity and corresponding Saint-Venant principle. Int. J. Solids Struct. 44, 346–572 (2007)

    Google Scholar 

  19. Georgiadis, H.G., Anagnostou, D.S.: Problems of the Flamant-Boussinesq and Kelvin type in dipolar gradient elasticity. J. Elast. 90, 71–98 (2008)

    Article  MathSciNet  Google Scholar 

  20. Papargyri-Beskou, S., Polyzos, D., Beskos, D.E.: Wave dispersion in gradient elastic solids and structures: a unified treatment. Int. J. Solids Struct. 46(21), 3751–3759 (2009)

    Article  Google Scholar 

  21. Gao, X.L., Zhou, S.S.: Strain gradient solutions of half-space and half-plane contact problems. Z Angew. Math. Phys. 64, 1363–1386 (2013)

    Article  MathSciNet  Google Scholar 

  22. Georgiadis, H.G., Gourgiotis, P.A., Anagnostou, D.S.: The Boussinesq problem in dipolar gradient elasticity. Arch. Appl. Mech. 84, 1373–1391 (2014)

    Article  Google Scholar 

  23. Papargyri-Beskou, S., Tsinopoulos, S.: Lamé’s strain potential method for plane gradient elasticity problems. Arch. Appl. Mech. 85(9–10), 1399–1419 (2015)

    Article  Google Scholar 

  24. Lazar, M., Polyzos, D.: On non-singular crack fields in Helmholtz type enriched elasticity theories. Int. J. Solids Struct. 62, 1–7 (2015)

    Article  Google Scholar 

  25. Polyzos, D., Huber, G., Mylonakis, G., Triantaffylidis, T., Papargyri-Beskou, S., Beskos, D.E.: Torsional vibrations of a column of fine-grained material: a gradient elastic approach. J. Mech. Phys. Solids 76, 338–358 (2015)

    Article  MathSciNet  Google Scholar 

  26. Gavardinas, I.D., Giannakopoulos, A.E., Zisis, T.: A von Karman plate analogue for solving anti-plane problems in couple stress and dipolar gradient elasticity. Int. J. Solids Struct. 148–149, 169–180 (2018)

    Article  Google Scholar 

  27. Pegios, I.P.S., Zhou, Y., Papargyri-Beskou, S., He, P.: Steady-state dynamic response of a gradient elastic half-plane to a load moving on its surface with constant speed. Arch. Appl. Mech. 89, 1809–1824 (2019)

    Article  Google Scholar 

  28. Siddharthan, R., Zafir, Z., Norris, G.M.: Moving load response of layered soil. I: formulation; II: verification and application. J. Eng. Mech. 119(10), 2052–2071 (1993)

    Article  Google Scholar 

  29. Theodorakopoulos, D.D.: Dynamic analysis of a poroelastic half-plane soil medium under moving loads. Soil Dyn. Earthq. Eng. 23, 521–533 (2003)

    Article  Google Scholar 

  30. Suiker, A.S.J., Metrikine, A.V., De Borst, R.: Dynamic behavior of a layer of discrete particles, Part 2: response to a uniformly moving, harmonically vibrating load. J. Sound Vib. 240(1), 19–39 (2001)

    Article  Google Scholar 

  31. Mathematica, Version 4.1, Wolfram Research Inc., Champaign, IL, USA, 2004.

Download references

Acknowledgements

The authors are grateful to the Department of Disaster Mitigation for Structures, College of Civil Engineering, Tongji University, Shanghai 200092, China, for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Muho.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

For n = 0 and m = 0, Eqs. (27), (28), and (29) become

$$ \begin{array}{*{20}c} {U_{00}^{^{\prime\prime}} \left( z \right) - g^{2} U_{00}^{IV} \left( z \right) = 0}, \\ {V_{00}^{^{\prime\prime}} \left( z \right) - g^{2} V_{00}^{IV} \left( z \right) = 0}, \\ {W_{00}^{^{\prime\prime}} \left( z \right) - g^{2} W_{nm}^{IV} = 0}. \\ \end{array} $$
(48)

Equation (48) has the same characteristic equation

$$ \rho ^{2} \left( {1 - g^{2} \rho ^{2} } \right) = 0~~~{\text{with~roots}}~\rho _{{1,2~}} = 0,~~\rho _{{3,4}} = \pm \sqrt {\frac{1}{g}}. $$
(49)

Thus, the solutions of the above equations read

$$ \begin{array}{*{20}c} {U_{00} \left( z \right) = A_{1} e^{{\frac{1}{g}z}} + A_{2} e^{{\frac{1}{g}z}} + \left( {A_{3} z + A_{4} } \right)}, \\ {V_{00} \left( z \right) = B_{1} e^{{\frac{1}{g}z}} + B_{2} e^{{\frac{1}{g}z}} + \left( {B_{3} z + B_{4} } \right)}, \\ {W_{00} \left( z \right) = C_{1} e^{{\frac{1}{g}z}} + C_{2} e^{{\frac{1}{g}z}} + \left( {C_{3} z + C_{4} } \right)}. \\ \end{array} $$
(50)

From the classical boundary conditions of Eqs. (13) and (14), we obtain

$$ \begin{array}{*{20}l} {P_{x} |_{{z = 0}} = 0~~or~\mu U_{{00}}^{'} \left( 0 \right) - g^{2} \mu U_{{00}}^{{'''}} \left( 0 \right) = 0 \to A_{3} = 0}, \hfill \\ {P_{y} |_{{z = 0}} = 0 \to B_{3} = 0}, \hfill \\ {P_{z} |_{{z = 0}} = - F_{{00}} ~~ \to C_{3} = - \frac{{F_{{00}} }}{{\lambda + 2\mu }}}. \hfill \\ \end{array} $$
(51)

From the non-classical boundary conditions of Eq. (15), we have

$$ \begin{array}{*{20}c} {R_{x} |_{z = 0} = 0 \to U_{00}^{^{\prime\prime}} \left( 0 \right) = 0 \to A_{1} = - A_{2} }, \\ {R_{y} |_{z = 0} = 0 \to V_{00}^{^{\prime\prime}} \left( 0 \right) = 0 \to B_{1} = - B_{2} }, \\ {R_{Z} |_{ z = 0} = 0 \to W_{00}^{^{\prime\prime}} \left( 0 \right) = 0 \to C_{1} = - C_{2} }. \\ \end{array} $$
(52)

Finally, from the three displacements boundary conditions of Eqs. (16) and (17), we obtain

$$ \begin{array}{*{20}c} {u_{x} \left( {x,y,H,t} \right) = 0 \to U_{00} \left( H \right) = 0}, \\ {u_{y} \left( {x,y,H,t} \right) = 0 \to V_{00} \left( H \right) = 0}, \\ {u_{z} \left( {x,y,H,t} \right) = 0 \to W_{00} \left( H \right) = 0},\\ \end{array} $$
(53)
$$ \begin{array}{*{20}c} {\frac{{\partial u_{x} }}{\partial z}\left( {x,y,H,t} \right) = 0 \to U_{00}^{^{\prime}} \left( H \right) = 0}, \\ {\frac{{\partial u_{y} }}{\partial z}\left( {x,y,H,t} \right) = 0 \to V_{00}^{^{\prime}} \left( H \right) = 0}, \\ {\frac{{\partial u_{z} }}{\partial z}\left( {x,y,H,t} \right) = 0 \to W_{00}^{^{\prime}} \left( H \right) = 0}. \\ \end{array} $$
(54)

By substituting Eqs. (50, 51, 52) to Eqs. (53, 54), we obtain the final values of the coefficients \({A}_{i}\), \({B}_{i}\), \({C}_{i}\) (\(i=1-4\)) which are of the form

$$ \begin{array}{*{20}c} {A_{1} = A_{2} = A_{3} = A_{4} = B_{1} = B_{2} = B_{3} = B_{4} = 0}, \\ {C_{1} = \frac{{gF_{00} }}{{\left( {\lambda + 2\mu } \right)\left( {e^{\frac{H}{g}} + e^{{ - \frac{H}{g}}} } \right)}}}, \\ {C_{2} = - \frac{{gF_{00} }}{{\left( {\lambda + 2\mu } \right)\left( {e^{\frac{H}{g}} + e^{{ - \frac{H}{g}}} } \right)}}}, \\ {C_{3} = - \frac{{gF_{00} }}{{\left( {\lambda + 2\mu } \right)}}}, \\ {C_{4} = - \frac{{gF_{00} }}{{\left( {\lambda + 2\mu } \right)}} + \frac{{F_{00} H}}{{\left( {\lambda + 2\mu } \right)}}}. \\ \end{array} $$
(55)

From Eqs. (50) and (55), we obtain the final solutions in the form

$$ \begin{array}{*{20}c} { U_{00} \left( z \right) = 0}, \\ {V_{00} \left( z \right) = 0}, \\ {W_{00} \left( z \right) = \frac{{F_{00} }}{\lambda + 2\mu }\left( {H - z} \right) + \frac{{gF_{00} }}{\lambda + 2\mu }\left( {\frac{{e^{\frac{z}{g}} - e^{{ - \frac{z}{g}}} }}{{e^{\frac{H}{g}} - e^{{ - \frac{H}{g}}} }}} \right) - \frac{{gF_{00} }}{\lambda + 2\mu }}. \\ \end{array} $$
(56)

We can observe that for g = 0 we obtain the classical solution, which reads

$$ \begin{array}{*{20}c} {U_{00} \left( z \right) = 0}, \\ {V_{00} \left( z \right) = 0}, \\ {W_{00} \left( z \right) = \frac{{F_{00} }}{\lambda + 2\mu }\left( {H - z} \right)}. \\ \end{array} $$
(57)

The solution (57) is the same as the solution (60) given in Beskou et al. [12].

Appendix 2

For n = 0 and m > 0, Eqs. (27, 28, 29) become

$$ \alpha_{1} U_{0m} \left( z \right) + a_{2} U_{0m}^{^{\prime\prime}} \left( z \right) + \alpha_{3} U_{0m}^{IV} \left( z \right) = 0, $$
(58)
$$ b_{1} V_{{0m}} \left( z \right) + b_{2} V_{{0m}}^{{''}} \left( z \right) + b_{3} V_{{0m}}^{{IV}} \left( z \right) + b_{6} W_{{0m}}^{'} \left( z \right) + b_{7} W_{{0m}}^{{'''}} = 0, $$
(59)
$$ c_{3} V_{{0m}}^{'} \left( z \right) + c_{4} V_{{0m}}^{{'''}} \left( z \right) + c_{5} W_{{0m}} (z) + c_{6} W_{{0m}}^{{''}} \left( z \right) + c_{7} W_{{0m}}^{{IV}} = 0 $$
(60)

where

$$ \begin{array}{*{20}l} {\alpha_{1} = - \left( {\mu \mu_{m}^{2} + g^{2} \mu \mu_{m}^{4} } \right)}, \hfill \\ {a_{2} = \mu + 2g^{2} \mu \mu_{m}^{2} }, \hfill \\ {a_{3} = - g^{2} \mu }, \hfill \\ {b_{1} = - \left( {\left( {\lambda + 2\mu } \right)\mu_{m}^{2} + g^{2} \left( {\lambda + 2\mu } \right)\mu_{m}^{4} } \right)} \hfill \\ {b_{2} = \mu + g^{2} \left( {\lambda + 3\mu } \right)\mu_{m}^{2} } \hfill \\ {b_{3} = - g^{2} \mu } \hfill \\ {b_{6} = i\mu_{m} \left( {\lambda + \mu } \right)\left( {1 + g^{2} \mu_{m}^{2} } \right)} \hfill \\ {b_{7} = - ig^{2} \mu_{m} \left( {\lambda + \mu } \right)} \hfill \\ {c_{3} = i\mu_{m} \left( {\lambda + \mu } \right)\left( {1 + g^{2} \mu_{m}^{2} } \right)} \hfill \\ {c_{4} = - ig^{2} \mu_{m} \left( {\lambda + \mu } \right)} \hfill \\ {c_{5} = - \mu_{m}^{2} \mu \left( {1 + g^{2} \mu_{m}^{2} } \right)} \hfill \\ {c_{6} = \left( {\lambda + 2\mu } \right)\left( {1 + g^{2} \mu_{m}^{2} } \right) + g^{2} \mu \mu_{m}^{2} } \hfill \\ {c_{7} = - g^{2} \left( {\lambda + 2\mu } \right)}. \hfill \\ \end{array} $$
(61)

Solutions of the system of Eqs. (58), (59), and (60) are assumed to be of the form

$$ \begin{array}{*{20}c} {U_{0m} = R_{0m} e^{qz} }, \\ {V_{0m} = S_{0m} e^{qz} }, \\ {W_{0m} = T_{0m} e^{qy} }. \\ \end{array} $$
(62)

Substitution of the above solutions (62) into the system of Eqs. (58), (59), and (60) results in the equation

$$ \left\{ {\begin{array}{*{20}c} {a_{1} + \alpha_{2} q^{2} + \alpha_{3} q^{4} } & 0 & 0 \\ 0 & { b_{1} + b_{2} q^{2} + b_{3} q^{4} } & {q(b_{6} + b_{7} q^{2} )} \\ 0 & {q(c_{3} + c_{4} q^{2} )} & {c_{5} + c_{6} q^{2} + c_{7} q^{4} } \\ \end{array} } \right\}\left\{ {\begin{array}{*{20}c} {R_{0m} } \\ {S_{0m} } \\ {T_{0m} } \\ \end{array} } \right\} = \left\{ {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \right\}. $$
(63)

For nonzero solutions of the system of Eq. (63), the following algebraic equation should be satisfied:

$$ \left( {a_{1} + a_{2} q^{2} + a_{3} q^{4} } \right)[\left( {b_{1} + b_{2} q^{2} + b_{3} q^{4} } \right)\left( {c_{5} + c_{6} q^{2} + c_{7} q^{4} } \right) - q^{2} (c_{3} + c_{4} q^{2} )\left( {b_{6} + b_{7} q^{2} )} \right] = 0. $$
(64)

Equation (64) is solved for its 12 roots \(q_{k} { }\left( {k = 1,2, \ldots 12} \right).{ }\) Thus, the solutions (62) can take the final form

$$ \begin{array}{*{20}c} {U_{0m } = R_{0m1} e^{{\lambda_{1} z}} + R_{0m2} e^{{\lambda_{2} z}} + R_{0m3} z + R_{0m4} }, \\ {V_{0m } = \mathop \sum \limits_{k = 1}^{8} S_{0mk} e^{{q_{k} z}} },\\ {W_{0m } = \mathop \sum \limits_{k = 1}^{8} T_{0mk} e^{{q_{k} z}} } \\ \end{array} $$
(65)

where \(\lambda_{1}\) and \(\lambda_{2}\) are the two roots of the equation \(a_{3} q^{2} + a_{2} q + a_{1} = 0\), and S0mk, T0mk are the values of S0m and T0m for the qk, respectively. By assuming S0mk known, one obtains from (65)

$$ \begin{array}{*{20}c} {T_{0mk} = C_{k} S_{0mk} } & {for} & {k = 1,2,..8} & {\left( {k\,is \, not \, a \, summation \, index} \right)} \\ \end{array} $$
(66)

with

$$ C_{k} = \frac{{\left( {b_{1} + b_{2} q_{k}^{2} + b_{5} q_{k}^{4} } \right)}}{{q_{k} \left( {b_{6} + b_{7} q_{k}^{2} } \right)}} for \, k = 1,2,..8, $$
(67)

The displacements now take the forms

$$ \begin{array}{*{20}c} {u_{x} \left( {x,y,z,t} \right) = Re\mathop \sum \limits_{{m = 1}}^{M} \left( {R_{{0m1}} e^{{\lambda _{1} z}} + R_{{0m2}} e^{{\lambda _{2} z}} + R_{{0m3}} z + R_{{0m4}} } \right)e^{{i\mu _{m} y}} \equiv 0}, \\ {u_{y} \left( {x,y,z,t} \right) = Re\mathop \sum \limits_{{m = 1}}^{M} \left( {\mathop \sum \limits_{{k = 1}}^{8} S_{{0mk}} e^{{qz}} } \right)e^{{i\mu _{m} y}} }, \\ {u_{z} \left( {x,y,z,t} \right) = Re\mathop \sum \limits_{{m = 1}}^{M} \left( {\mathop \sum \limits_{{k = 1}}^{8} C_{k} S_{{0mk}} e^{{qz}} } \right)e^{{i\mu _{m} y}} }, \\ \end{array} $$
(68)

In the above, there are 12 constants (8 S0mk, k = 1–8 and 4 \(R_{0mi}\), i = 1–4) to be determined from the 12 boundary conditions. These boundary conditions are given by Eqs. (13), (14), (15), (16), and (17), which after the substitution of the displacements from (68) reduce to the following algebraic system of equations:

$$ \begin{array}{*{20}c} {P_{x} |_{z = 0} \, = \mu \left( {1 + 2g^{2} \mu_{m}^{2} } \right)\left( {R_{0m1} \lambda_{1} + R_{0m2} \lambda_{2} + R_{0m3} } \right) - \mu g^{2} \left( {R_{0m1} \lambda_{1}^{2} + R_{0m2} \lambda_{2}^{2} } \right) = 0}, \\ {P_{y} |_{z = 0} = \mathop \sum \limits_{k = 1}^{8} \overline{B}_{1k} S_{0mk} = 0}, \\ {P_{z} |_{z = 0} = \mathop \sum \limits_{k = 1}^{8} \overline{B}_{2k} S_{0mk} = - F_{0m} }, \\ \end{array} $$
(69)
$$ \begin{array}{*{20}c} {R_{x} |_{z = 0} = g^{2} \mu \left( {R_{0m1} \lambda_{1}^{2} + R_{0m2} \lambda_{2}^{2} } \right) = 0}, \\ {R_{y} |_{ z = 0} = \mathop \sum \limits_{k = 1}^{8} \overline{B}_{3k} S_{0mk} = 0}, \\ {R_{Z} |_{ z = 0} = \mathop \sum \limits_{k = 1}^{8} \overline{B}_{4k} S_{0mk} = 0}, \\ \end{array} $$
(70)
$$ \begin{array}{*{20}c} {U_{0m} \left( H \right) = R_{0m1} e^{{\lambda_{1} {\rm H}}} + R_{0m2} e^{{\lambda_{2} {\rm H}}} + R_{0m3} {\rm H} + R_{0m4} = 0}, \\ {V_{0m} \left( H \right) = \mathop \sum \limits_{k = 1}^{8} \overline{B}_{5k} S_{0mk} = 0}, \\ {W_{0m} \left( H \right) = \mathop \sum \limits_{k = 1}^{8} \overline{B}_{6k} S_{0mk} = 0}, \\ \end{array} $$
(71)
$$ \begin{array}{*{20}c} {U_{0m}^{^{\prime}} \left( H \right) = R_{0m1} \lambda_{1} e^{{\lambda_{1} {\rm H}}} + R_{0m2} \lambda_{2} e^{{\lambda_{2} {\rm H}}} + R_{0m3} = 0}, \\ {V_{0m}^{^{\prime}} \left( H \right) = \mathop \sum \limits_{k = 1}^{8} \overline{B}_{7k} S_{0mk} = 0}, \\ {W_{0m}^{^{\prime}} \left( H \right) = \mathop \sum \limits_{k = 1}^{8} \overline{B}_{8k} S_{0mk} = 0} \\ \end{array} $$
(72)

where \({\overline{B} }_{1k}-{\overline{B} }_{8k}\) can be obtained from Eq. (46) by setting \({\lambda }_{n}\)=0 and considering that \({\overline{B} }_{1k}={B}_{2k}\), \({\overline{B} }_{2k}={B}_{3k}\), \({\overline{B} }_{3k}={B}_{5k}\), \({\overline{B} }_{4k}={B}_{6k}\), \({\overline{B} }_{5k}={B}_{8k}\), \({\overline{B} }_{6k}={B}_{9k}\), \({\overline{B} }_{7k}={B}_{11k}\), and \({\overline{B} }_{8k}={B}_{12k}\).

After solving Eqs. (69), (70), (71), and (72) for \({R}_{0mi}\) and \({S}_{0mk}\), one can compute \({U}_{0m}\), \({V}_{0m}\), and \({W}_{0m}\) from Eq. (65) and finally the displacements uy (x, y, z, t) and uz (x, y, z, t) from Eq. (68). For g = h = 0, we find the classical case, which is the same as that given in Appendix B in Beskou et al. [12].

Appendix 3

For n > 0 and m = 0, Eqs. (27), (28), and (29) become

$$ \alpha _{1} U_{{n0}} \left( z \right) + a_{2} U_{{n0}}^{{''}} \left( z \right) + a_{3} U_{{n0}}^{{IV}} \left( z \right) + \alpha _{6} W_{{n0}}^{'} \left( z \right) + a_{7} W_{{n0}}^{{'''}} \left( z \right) = 0, $$
(73)
$$ b_{1} V_{n0} \left( z \right) + b_{2} V_{n0}^{^{\prime\prime}} \left( z \right) + b_{3} V_{n0}^{IV} \left( z \right) = 0, $$
(74)
$$ c_{1} U_{{n0}}^{'} \left( z \right) + c_{2} U_{{n0}}^{{'''}} + c_{5} W_{{n0}} (z) + c_{6} W_{{n0}}^{{''}} \left( z \right) + c_{7} W_{{n0}}^{{IV}} \left( z \right) = 0 $$
(75)

where

$$ \begin{array}{*{20}l} {\alpha_{1} = - (\left( {\lambda + 2\mu } \right)\lambda_{n}^{2} \left( {1 + g^{2} \lambda_{n}^{2} } \right) - \rho \lambda_{n}^{2} V^{2} \left( {1 + h^{2} \lambda_{n}^{2} } \right)}, \hfill \\ {a_{2} = \mu + g^{2} \left( {\lambda + 3\mu } \right)\lambda_{n}^{2} - \rho h^{2} \lambda_{n}^{2} V^{2} }, \hfill \\ {a_{3} = - g^{2} \mu }, \hfill \\ {\alpha_{6} = i\lambda_{n} \left( {\lambda + \mu } \right)\left( {1 + g^{2} \lambda_{n}^{2} } \right)}, \hfill \\ {\alpha_{7} = - ig^{2} \lambda_{n} \left( {\lambda + \mu } \right)} \hfill \\ {b_{2} = \mu + g^{2} \mu \lambda_{n}^{2} + g^{2} \mu \lambda_{n}^{2} - \rho h^{2} \lambda_{n}^{2} V^{2} } \hfill \\ {b_{3} = - g^{2} \mu } \hfill \\ {c_{1} = i\left( {\lambda + \mu } \right)\lambda_{n} \left( {1 + g^{2} \lambda_{n}^{2} } \right)} \hfill \\ {c_{2} = - ig^{2} \left( {\lambda + \mu } \right)\lambda_{n } } \hfill \\ {c_{5} = - \lambda_{n}^{2} (\mu \left( {1 + g^{2} \lambda_{n}^{2} } \right) - \rho h^{2} \lambda_{n}^{2} V^{2} ) + \rho \lambda_{n}^{2} V^{2} } \hfill \\ {c_{6} = \left( {\lambda + 2\mu } \right)\left( {1 + g^{2} \lambda_{n}^{2} } \right) + g^{2} \mu \lambda_{n}^{2} - \rho h^{2} \lambda_{n}^{2} V^{2} ,} \hfill \\ {c_{7} = - g^{2} \left( {\lambda + 2\mu } \right)}. \hfill \\ \end{array} $$
(76)

Solutions of the system of Eqs. (73), (74), and (75) are assumed to be of the form

$$ \begin{array}{*{20}c} {U_{n0} = R_{n0} e^{qz} }, \\ {V_{n0} = S_{n0} e^{qz} }, \\ {W_{n0} = T_{n0} e^{qz} }. \\ \end{array} $$
(77)

Substitution of the above solutions (77) into the system of Eqs. (73), (74), and (75) results in the equation

$$ \left\{ {\begin{array}{*{20}c} {a_{1} + \alpha_{2} q^{2} + \alpha_{3} q^{4} } & 0 & {a_{6} q + a_{7} q^{3} } \\ 0 & { b_{1} + b_{2} q^{2} + b_{3} q^{4} } & 0 \\ {c_{1} q + c_{2} q^{3} } & 0 & {c_{5} + c_{6} q^{2} + c_{7} q^{4} } \\ \end{array} } \right\}\left\{ {\begin{array}{*{20}c} {R_{n0} } \\ {S_{n0} } \\ {T_{n0} } \\ \end{array} } \right\} = \left\{ {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ \end{array} } \right\}, $$
(78)

For nonzero solutions of the system of Eq. (78), the following algebraic equation should be satisfied:

$$ \left( {b_{1} + b_{2} q^{2} + b_{5} q^{4} } \right)\left[ {\left( {c_{5} + c_{6} q^{2} + c_{7} q^{4} } \right)\left( {\alpha_{1} + \alpha_{2} q^{2} + a_{3} q^{4} } \right) - q^{2} \left( {a_{6} + a_{7} q^{2} } \right)\left( {c_{1} + c_{2} q^{2} } \right)} \right] = 0. $$
(79)

Equation (79) is solved for its 12 roots \(q_{k} \left( {k = 1,2, \ldots 12} \right). \) Thus, the solutions (77) can take the final form

$$ \begin{array}{*{20}c} {U_{n0 } = \mathop \sum \limits_{k = 1}^{8} R_{n0k} e^{{q_{k} z}} }, \\ {V_{n0 } = S_{n01} e^{{\lambda_{1} z}} + S_{n02} e^{{\lambda_{2} z}} + S_{n03} z + S_{n04} }, \\ {W_{n0 } = \mathop \sum \limits_{k = 1}^{8} T_{n0k} e^{{q_{k} z}} } \\ \end{array} $$
(80)

where \(\lambda_{1}\) and \(\lambda_{2}\) are the two roots of the equation \(b_{5} q^{2} + b_{2} q + b_{1} = 0\), and \(R_{n0k} , T_{n0k}\) are the values of \(R_{n0}\), and \(T_{n0}\) for the \(q_{k}\), respectively.

By assuming R0mk known, one obtains from (80)

$$ \begin{array}{*{20}c} {T_{n0k} = C_{k} R_{n0k} } & {for} & {k = 1,2,..8} & {\left( {k\,is \, not \, a \, summation \, index} \right)} \\ \end{array}, $$
(81)

with

$$ \begin{array}{*{20}c} {C_{k} = \frac{{\left( {a_{1} + a_{2} q_{k}^{2} + a_{3} q_{k}^{4} } \right)}}{{q_{k} \left( {a_{6} + a_{7} q_{k}^{2} } \right)}}} & {{\text{for}}} & {k = 1,2,..8,} \\ \end{array}. $$
(82)

The displacements now take the forms

$$ \begin{array}{*{20}l} \begin{gathered} u_{x} \left( {x,y,z,t} \right) = Re\sum\nolimits_{{m = 1}}^{M} {\left( {\sum\limits_{{k = 1}}^{8} {R_{{n0k}} e^{{qz}} } } \right)e^{{i\mu _{m} y}} \equiv 0}, \hfill \\ u_{y} \left( {x,y,z,t} \right) = Re\mathop \sum \limits_{{n = 1}}^{N} \left( {S_{{n01}} e^{{\lambda _{1} z}} + S_{{n02}} e^{{\lambda _{2} z}} + S_{{n03}} z + S_{{n04}} } \right), \hfill \\ \end{gathered} \hfill \\ {u_{z} \left( {x,y,z,t} \right) = Re\mathop \sum \limits_{{m = 1}}^{M} \left( {\mathop \sum \limits_{{k = 1}}^{8} C_{k} R_{{n0k}} e^{{qz}} } \right)e^{{i\mu _{m} y}} }. \hfill \\ \end{array} $$
(83)

In the above, there are 12 constants (8 \({R}_{n0k}\),  k= 1–8 and 4 \({S}_{noi}\), i = 1–4) to be determined from the 12 boundary conditions. These boundary conditions are given by Eqs. (13), (14), (15), (16), and (17), which after the substitution of the displacements from (83) reduce to the following algebraic system of equations:

$$ \begin{array}{*{20}l} {P_{x} |_{{z = 0}} = \mathop \sum \limits_{{k = 1}}^{8} \overline{{\bar{B}}} _{{1k}} R_{{n0k}} = 0}, \hfill \\ P_{y} |_{{z = 0}} = - i\rho h^{2} \lambda _{n}^{3} V^{2} \left( {S_{{n01}} + S_{{n02}} + S_{{n04}} } \right) \\ + \left[ {\mu \left( {1 + 2g^{2} \lambda _{n}^{2} } \right) - \rho h^{2} \lambda _{n}^{2} V^{2} } \right)\left( {S_{{n01}} \lambda _{1} + S_{{n02}} \lambda _{2} + S_{{n03}} } \right) \\ - g^{2} \mu \left( {S_{{n01}} \lambda _{1}^{3} + S_{{n02}} \lambda _{2}^{3} } \right), \\ {P_{z} |_{{z = 0}} = \mathop \sum \limits_{{k = 1}}^{8} \overline{{\bar{B}}} _{{2k}} R_{{n0k}} = - F_{{n0}} }, \hfill \\ \end{array} $$
(84)
$$ \begin{array}{*{20}c} {R_{x} |_{z = 0} = \mathop \sum \limits_{k = 1}^{8} \overline{{\overline{B}}}_{3k} R_{n0k} = 0}, \\ {R_{y} |_{z = 0} = g^{2} \mu \left( {S_{n01} \lambda_{1}^{2} + S_{n02} \lambda_{2}^{2} } \right)}, \\ {R_{z} |_{z = 0} = \mathop \sum \limits_{k = 1}^{8} \overline{{\overline{B}}}_{4k} R_{n0k} = 0}, \\ \end{array} $$
(85)
$$ \begin{array}{*{20}c} {U_{n0} \left( H \right) = \mathop \sum \limits_{k = 1}^{8} \overline{B}_{5k} R_{n0k} = 0}, \\ {V_{n0} \left( H \right) = S_{n01} e^{{\lambda_{1} H}} + S_{n02} e^{{\lambda_{2} H}} + S_{n03} H + S_{n04} = 0}, \\ {W_{n0} \left( H \right) = \mathop \sum \limits_{k = 1}^{8} \overline{{\overline{B}}}_{6k} R_{n0k} = 0}, \\ \end{array} $$
(86)
$$ \begin{array}{*{20}c} {U_{n0}^{^{\prime}} \left( H \right) = \mathop \sum \limits_{k = 1}^{8} \overline{B}_{7k} R_{n0k} = 0}, \\ {V_{n0}^{^{\prime}} \left( H \right) = S_{n01} \lambda_{1} e^{{\lambda_{1} H}} + S_{n02} \lambda_{2} e^{{\lambda_{2} H}} + S_{n03} = 0}, \\ {W_{n0}^{^{\prime}} \left( H \right) = \mathop \sum \limits_{k = 1}^{8} \overline{{\overline{B}}}_{8k} R_{n0k} = 0} \\ \end{array} $$
(87)

where \({\stackrel{-}{\overline{B}} }_{1k}\)\({\stackrel{-}{\overline{B}} }_{8k}\) can be obtained from Eq. (46) by setting \({\mu }_{m}\)=0 and considering that \({\stackrel{-}{\overline{B}} }_{1k}={B}_{1k}\), \({\stackrel{-}{\overline{B}} }_{2k}={B}_{3k}\), \({\stackrel{-}{\overline{B}} }_{3k}={B}_{4k}\), \({\stackrel{-}{\overline{B}} }_{4k}={B}_{6k}\), \({\stackrel{-}{\overline{B}} }_{5k}={B}_{7k}\), \({\stackrel{-}{\overline{B}} }_{6k}={B}_{9k}\), \({\stackrel{-}{\overline{B}} }_{7k}={B}_{10k}\), and \({\stackrel{-}{\overline{B}} }_{8k}={B}_{12k}\).

After solving Eqs. (84), (85), (86), and (87) for \({S}_{noi}\) and \({R}_{n0k}\), one can compute \({U}_{n0}\), \({V}_{n0}\), and \({W}_{n0}\) from Eq. (80) and finally the displacements ux (x, y, z, t) and uz (x, y, z, t) from Eq. (83). For g = h = 0, we find the classical case, which is the same as that given in Appendix C in Beskou et al. [12].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muho, E.V., Pegios, I.P., Zhou, Y. et al. Dynamic response of a gradient elastic half-space to a load moving on its surface with constant speed. Acta Mech 232, 3159–3178 (2021). https://doi.org/10.1007/s00707-021-03003-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-03003-7

Navigation