Skip to main content
Log in

The circumferential shearing of a cylindrical annulus of viscoelastic solids described by implicit constitutive relations

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, we use an implicit generalization of the celebrated Kelvin–Voigt solid constitutive equation to study the problem of circumferential shearing of a cylindrical annulus of viscoelastic material. This generalization of the Kelvin–Voigt model allows one to take into consideration the possibility of the body undergoing shear thinning or shear thickening and allows the material moduli to depend on the mechanical pressure. Most importantly, the constitutive relation is a relation in the true mathematical sense in that neither the stress, nor the strain nor the symmetric part of the velocity gradient can be expressed explicitly in terms of the other quantities, thereby making the balance of linear momentum and the constitutive relation requiring solution simultaneously, unlike the case of the Kelvin–Voigt model where we can substitute the constitutive expression for the stress into the equilibrium equations to obtain an equation for the displacement field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Notes

  1. The values for the constants in (3)–(5) can be compared with the values shown in Table 1 in [8] for a similar implicit model.

  2. The above values for \(\zeta \), \(\delta \) and \(\rho _r\) can be compared with the values used in [8].

References

  1. Cauchy, A.L.: Recherches sur l’équilibre et le mouvement interieur des corps solides ou fluids, elastiques ou non elastiques. Bull. Soc. Philomath. 9–13 (1823) (see also Oeuvres (2) 2, 300–304)

  2. Cauchy, A.L.: Sur les equations qui experiments les conditions d’équilibre ou le lois du mouvement intérieur, d’ un corps solide, élastique un non élastique. Ex. de Math. 3, 160–187 (1828) (see also Oeuvres (2) 8, 195–226)

  3. Thomson, W.: On the elasticity and viscosity of metals. Proc. R. Soc. London A 14, 289–297 (1865)

    Google Scholar 

  4. Voigt, W.: Ueber innere reibung fester korper, insbesondere der metalle. Ann. Phys. 283, 671–693 (1892)

    Article  Google Scholar 

  5. Jones Parry, E., Tabor, D.: Effect of hydrostatic pressure on the mechanical properties of polymers: a brief review of published data. J. Mater. Sci. 8, 1510–1516 (1973)

    Article  Google Scholar 

  6. Fillers, R.W., Tschoegl, N.W.: The effect of pressure on the mechanical properties of polymers. J. Rheol. 21, 51–100 (1977)

    Google Scholar 

  7. Sahapol, T., Miura, S.: Shear moduli of volcanic soils. Soil Dyn. Earthq. Eng. 25, 157–165 (2005)

    Article  Google Scholar 

  8. Bustamante, R., Rajagopal, K.R., Orellana, O., Meneses, R.: Implicit constitutive relations for describing the response of visco-elastic bodies. Int. J. Nonlin. Mech. 126, 103526 (2020)

    Article  Google Scholar 

  9. Bustamante, R., Rajagopal, K.R., Orellana, O., Meneses, R.: Implicit constitutive relations for visco-elastic solids: Part II. Non-homogeneous deformations. Int. J. Nonlin. Mech. 126, 103560 (2020)

    Article  Google Scholar 

  10. Rajagopal, K.R.: On implicit constitutive theories. Appl. Math. 48, 279–319 (2003)

    Article  MathSciNet  Google Scholar 

  11. Rajagopal, K.R.: The elasticity of elasticity. Z. Angew. Math. Phys. 58, 309–317 (2007)

    Article  MathSciNet  Google Scholar 

  12. Rajagopal, K.R.: Conspectus of concepts of elasticity. Math. Mech. Solids 16, 536–562 (2011)

    Article  MathSciNet  Google Scholar 

  13. Rajagopal, K.R.: On implicit constitutive theories for fluids. Journal of Fluid Mechanics 550, 243–249 (2006)

    Article  MathSciNet  Google Scholar 

  14. Le Roux, C., Rajagopal, K.R.: Shear flows of a new class of power-law fluids. Appl. Math. 58, 153–177 (2013)

    Article  MathSciNet  Google Scholar 

  15. Perlácová, T., Prusa, V.: Tensorial implicit constitutive relations in mechanics of incompressible non-Newtonian fluids. J. Non-Newt. Mech. 216, 13–21 (2015)

    Article  MathSciNet  Google Scholar 

  16. Oldroyd, J.G.: On the formulation of rheological equations of state. Proc. R. Soc. A 200, 523–541 (1950)

    MathSciNet  MATH  Google Scholar 

  17. Burgers, J.M.: Mechanical Considerations- model systems- phenomenological theories of relaxation and viscosity. In: First Report on Viscosity and Plasticity, Second ed. Nordemann Publishing Company, Inc., New York, Prepared by the committee of viscosity of the academy of sciences at Amsterdam (1939)

  18. Edgeworth, R., Dalton, B.J., Parnell, T.: The pitch drop experiment. Eur. J. Phys. 5, 198–200 (1984)

    Article  Google Scholar 

  19. http://www.physics.uq.edu.au/pitchdrop/pitchdrop.shtml

  20. Comsol Multiphysics, Version 3.4, Comsol Inc. Palo Alto, CA (2007)

  21. Truesdell, C.A.: A first course in rational continuum mechanics. Academic Press, (1977)

Download references

Acknowledgements

R. Bustamante would like to express his gratitude for the financial support provided by FONDECYT (Chile) under grant no. 1160030. K. R. Rajagopal thanks the National Science Foundation and the Office of Naval Research for support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Bustamante.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bustamante, R., Rajagopal, K.R. The circumferential shearing of a cylindrical annulus of viscoelastic solids described by implicit constitutive relations. Acta Mech 232, 2679–2694 (2021). https://doi.org/10.1007/s00707-021-02968-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-02968-9

Navigation