Skip to main content
Log in

Shear-lag model for discontinuous fiber-reinforced composites with a membrane-type imperfect interface

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A shear-lag model is developed for discontinuous fiber-reinforced composites with a membrane-type imperfect interface, across which the displacement vector is continuous but the traction vector suffers a jump that is governed by the generalized Young–Laplace equation. Closed-form expressions are obtained for the stress fields in both the fiber-reinforced region and the pure matrix regions and for the shear stress on the interface from both the fiber and matrix sides. To illustrate the newly developed analytical model, a numerical analysis is provided by directly using the general formulas derived. The numerical results reveal that the fiber aspect ratio and the interface parameter can both have significant effects on the stress distributions in the composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Gu, S.T., Liu, J.T., He, Q.C.: Size-dependent effective elastic moduli of particulate composites with interfacial displacement and traction discontinuities. Int. J. Solids Struct. 51(13), 2283–2296 (2014)

    Google Scholar 

  2. Hashin, Z.: Thin interphase/imperfect interface in elasticity with application to coated fiber composites. J. Mech. Phys. Solids 50(12), 2509–2537 (2002)

    MathSciNet  MATH  Google Scholar 

  3. Le Quang, H., He, Q.C.: Variational principles and bounds for elastic inhomogeneous materials with coherent imperfect interfaces. Mech. Mater. 40(10), 865–884 (2008)

    Google Scholar 

  4. Duan, H.L., Yi, X., Huang, Z.P.: A unified scheme for prediction of effective moduli of multiphase composites with interface effects. part I: theoretical framework. Mech. Mater. 39(1), 81–93 (2007)

    Google Scholar 

  5. Brisard, S., Dormieux, L., Kondo, D.: Hashin-Shtrikman bounds on the shear modulus of a nanocomposite with spherical inclusions and interface effects. Comput. Mater. Sci. 50(2), 403–410 (2010)

    Google Scholar 

  6. Chen, T., Dvorak, G.J.: Fibrous nanocomposites with interface stress: Hill’s and Levin’s connections for effective moduli. Appl. Phys. Lett. 88, 211912–1–211912–3 (2006)

  7. Sharma, P., Ganti, S.: Size-dependent Eshelby’s tensor for embedded nano-inclusions incorporating surface/interface energies. J. Appl. Mech. 71(5), 663–671 (2004)

    MATH  Google Scholar 

  8. Duan, H.L., Wang, J., Huang, Z.P., Karihaloo, B.L.: Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. J. Mech. Phys. Solids 53(7), 1574–1596 (2005)

    MathSciNet  MATH  Google Scholar 

  9. Hashin, Z.: The spherical inclusion with imperfect interface. J. Appl. Mech. 58(2), 444–449 (1991)

    Google Scholar 

  10. Zhong, Z., Meguid, S.A.: On the elastic field of a spherical inhomogeneity with an imperfectly bonded interface. J. Elast. 46(2), 91–113 (1997)

    MathSciNet  MATH  Google Scholar 

  11. Benveniste, Y.: The effective mechanical behaviour of composite materials with imperfect contact between the constituents. Mech. Mater. 4(2), 197–208 (1985)

    Google Scholar 

  12. Hashin, Z.: Thermoelastic properties of fiber composites with imperfect interface. Mech. Mater. 8(4), 333–348 (1990)

    Google Scholar 

  13. Chen, T., Dvorak, G.J., Yu, C.C.: Size-dependent elastic properties of unidirectional nano-composites with interface stresses. Acta Mech. 188(1–2), 39–54 (2007)

    MATH  Google Scholar 

  14. Duan, H.L., Wang, J., Karihaloo, B.L.: Theory of elasticity at the nanoscale. Adv. Appl. Mech. 42, 1–68 (2009)

    Google Scholar 

  15. Mogilevskaya, S.G., Crouch, S.L., Stolarski, H.K.: Multiple interacting circular nano-inhomogeneities with surface/interface effects. J. Mech. Phys. Solids 56(6), 2298–2327 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mogilevskaya, S.G., Crouch, S.L., Grotta, A.L., Stolarski, H.K.: The effects of surface elasticity and surface tension on the transverse overall elastic behavior of unidirectional nano-composites. Compos. Sci. Technol. 70(3), 427–434 (2010)

    Article  Google Scholar 

  17. Mogilevskaya, S.G., Crouch, S.L., Stolarski, H.K., Benusiglio, A.: Equivalent inhomogeneity method for evaluating the effective elastic properties of unidirectional multi-phase composites with surface/interface effects. Int. J. Solids Struct. 47(3–4), 407–418 (2010)

    Article  MATH  Google Scholar 

  18. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57(4), 291–323 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  19. Tran, A.T., Le Quang, H., He, Q.C.: Computation of the size-dependent elastic moduli of nano-fibrous and nano-porous composites by FFT. Compos. Sci. Technol. 135, 159–171 (2016)

    Article  Google Scholar 

  20. Bövik, P.: On the modelling of thin interface layers in elastic and acoustic scattering problems. Q. J. Mech. Appl. Math. 47(1), 17–42 (1994)

    MathSciNet  MATH  Google Scholar 

  21. Gu, S.T., He, Q.C.: Interfacial discontinuity relations for coupled multifield phenomena and their application to the modeling of thin interphases as imperfect interfaces. J. Mech. Phys. Solids 59(7), 1413–1426 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Benveniste, Y.: A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media. J. Mech. Phys. Solids 54(4), 708–734 (2006)

    MathSciNet  MATH  Google Scholar 

  23. Xu, Y., He, Q.C., Gu, S.T.: Effective elastic moduli of fiber-reinforced composites with interfacial displacement and stress jumps. Int. J. Solids Struct. 80, 146–157 (2016)

    Google Scholar 

  24. Cox, H.L.: The elasticity and strength of paper and other fibrous materials. Br. J. Appl. Phys. 3(3), 72–79 (1952)

    Google Scholar 

  25. McCartney, L.N.: Analytical models of stress transfer in unidirectional composites and cross-ply laminates, and their application to the prediction of matrix/transverse cracking. In: Reddy, J.N., Reifsnider, K.L. (eds.) Local Mechanics Concepts for Composite Material Systems, IUTAM Symposia, pp. 251–282. Springer, Berlin (1992)

  26. Nairn, J.A.: On the use of shear-lag methods for analysis of stress transfer in unidirectional composites. Mech. Mater. 26(2), 63–80 (1997)

    Google Scholar 

  27. Gao, X.L., Li, K.: A shear-lag model for carbon nanotube-reinforced polymer composites. Int. J. Solids Struct. 42(5–6), 1649–1667 (2005)

    MATH  Google Scholar 

  28. Li, C., Chou, T.W.: Multiscale modeling of carbon nanotube reinforced polymer composites. J. Nanosci. Nanotechnol. 3(5), 423–430 (2003)

    Google Scholar 

  29. Thostenson, E.T., Chou, T.W.: On the elastic properties of carbon nanotube-based composites: modelling and characterization. J. Phys. D Appl. Phys. 36(5), 573–582 (2003)

    Google Scholar 

  30. Hu, Y.G., Li, Y.F., Han, J., Hu, C.P., Chen, Z.H., Gu, S.T.: Prediction of interface stiffness of single-walled carbon nanotube-reinforced polymer composites by shear-lag model. Acta Mech. 230, 2771–2782 (2019)

    MathSciNet  Google Scholar 

  31. Liu, Y.J., Chen, X.L.: Continuum models of carbon nanotube-based composites using the boundary element method. Electron. J. Bound. Elem. 1(2), 316–335 (2003)

    MathSciNet  Google Scholar 

  32. Benveniste, Y., Miloh, T.: Imperfect soft and stiff interfaces in two-dimensional elasticity. Mech. Mater. 33, 309–323 (2001)

    Google Scholar 

  33. Mogilevskaya, S.G., Crouch, S.L.: A Galerkin boundary integral method for multiple circular elastic inclusions with uniform interphase layers. Int. J. Solids Struct. 41, 1285–1311 (2004)

    MATH  Google Scholar 

  34. Hill, R.: Discontinuity relations in mechanics of solids. In: Sneddon, I.N., Hill, R. (eds.) Progress in Solid Mechanics, vol. 2, pp. 247–276. North-Holland, Amsterdam (1961)

    Google Scholar 

  35. Xia, Z., Okabe, T., Curtin, W.A.: Shear-lag versus finite element models for stress transfer in fiber-reinforced composites. Compos. Sci. Technol. 62, 1141–1149 (2002)

    Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China (Grant Nos. 51739003, 11672099, 51909173 and 11772117). The authors also would like to thank Professor George Weng and two anonymous reviewers for their encouragement and helpful comments on earlier versions of the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S.-T. Gu or X.-L. Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Derivation of Eq. (15)

Appendix: Derivation of Eq. (15)

From Eqs. (11), (12) and (13a) and (14), it follows that

$$\begin{aligned}&{\mathrm {\sigma }}_\mathrm{s} ={\mathbb {L}}_\mathrm{s} :\varvec{\upvarepsilon }_\mathrm{s} ={\mathbb {L}}_\mathrm{s} :{\mathbb {T}}:{\mathbb {M}}^{(2)}:\varvec{\sigma }^{(2)}={\mathbb {L}}_\mathrm{s} :{\mathbb {M}}^{(2)}:\varvec{\sigma }^{(2)} \nonumber \\&\quad = (2k_\mathrm{s} {\mathbb {J}}_\mathrm{s} +2\mu _\mathrm{s} {\mathbb {K}}_\mathrm{s} ):\left( \frac{1}{3k^{(2)}}{\mathbb {J}}+\frac{1}{2\mu ^{(2)}}{\mathbb {K}}\right) :\varvec{\sigma }^{(2)} \nonumber \\&\quad = \frac{2k_\mathrm{s} }{3k^{(2)}}{\mathbb {J}}_\mathrm{s} :{\mathbb {J}}:\varvec{\sigma }^{(2)}+\frac{k_\mathrm{s} }{\mu ^{(2)}}{\mathbb {J}}_\mathrm{s} :{\mathbb {K}}:\varvec{\sigma }^{(2)}+\frac{2\mu _\mathrm{s} }{3k^{(2)}}{\mathbb {K}}_\mathrm{s} :{\mathbb {J}}:\varvec{\sigma }^{(2)}+\frac{\mu _\mathrm{s} }{\mu ^{(2)}}{\mathbb {K}}_\mathrm{s} :{\mathbb {K}}:\varvec{\sigma }^{(2)}\quad \text{ on } \Gamma _{{ c}}, \end{aligned}$$
(A1)

where

$$\begin{aligned}&{\mathbb {J}}_\mathrm{s} :{\mathbb {J}}:\varvec{\sigma }^{\left( 2\right) }=\left( \frac{1}{2}{\mathbf {T}}\otimes {\mathbf {T}}\right) :\left( \frac{1}{3}{\mathbf {I}}\otimes {\mathbf {I}}\right) :\varvec{\sigma }^{\left( 2\right) }=\frac{1}{6}{\mathbf {T}}\left( {\mathbf {T}}:{\mathbf {I}}\right) \left( {\mathbf {I}}:\varvec{\sigma }^{\left( 2\right) }\right) =\frac{1}{3}{\mathbf {T}}\hbox {tr}^{\left( 2\right) } \nonumber \\&\quad =\frac{1}{3}\left( \sigma _{rr}^{\left( 2\right) } +\sigma _{\theta \theta }^{\left( 2\right) } +\sigma _{zz}^{\left( 2\right) } \right) {\mathbf {T}}\quad \text{ on } \Gamma _{{ c}}, \end{aligned}$$
(A2)
$$\begin{aligned}&{\mathbb {J}}_\mathrm{s} :{\mathbb {K}}:\varvec{\sigma }^{\left( 2\right) }={\mathbb {J}}_\mathrm{s} :\left( {\mathbb {I}}-{\mathbb {J}}\right) :\varvec{\sigma }^{\left( 2\right) }=\left( \frac{1}{2}{\mathbf {T}}\otimes {\mathbf {T}}\right) :\left( {\mathbb {I}}-\frac{1}{3}{\mathbf {I}}\otimes {\mathbf {I}}\right) :\varvec{\sigma }^{\left( 2\right) } \nonumber \\&\quad =\frac{1}{2}\left( {\mathbf {T}}\otimes {\mathbf {T}}\right) :{\mathbb {I}}:\varvec{\sigma }^{\left( 2\right) }-\frac{1}{6}{\mathbf {T}}\left( {\mathbf {T}}:{\mathbf {I}}\right) \left( {\mathbf {I}}:\varvec{\sigma }^{\left( 2\right) }\right) =\frac{1}{2}{\mathbf {T}}\left( {\mathbf {T}}:\varvec{\sigma }^{\left( 2\right) }\right) -\frac{1}{3}{\mathbf {T}}\hbox {tr}^{\left( 2\right) } \nonumber \\&\quad ={\mathbf {T}}\left( \frac{1}{2}{\mathbf {T}}:\varvec{\sigma }^{\left( 2\right) }-\frac{1}{3}\hbox {tr}\varvec{\sigma }^{\left( 2\right) }\right) ={\mathbf {T}} \left[ \frac{1}{2}\left( \sigma _{\theta \theta }^{\left( 2\right) } +\sigma _{zz}^{\left( 2\right) } \right) -\frac{1}{3}\left( \sigma _{rr}^{\left( 2\right) } +\sigma _{\theta \theta }^{\left( 2\right) } +\sigma _{zz}^{\left( 2\right) } \right) \right] \nonumber \\&\quad =\left( -\frac{1}{3}\sigma _{rr}^{\left( 2\right) } +\frac{1}{6}\sigma _{\theta \theta }^{\left( 2\right) } +\frac{1}{6}\sigma _{zz}^{\left( 2\right) } \right) {\mathbf {T}}\,\, \text{ on } \Gamma _{{ c}} , \end{aligned}$$
(A3)
$$\begin{aligned}&{\mathbb {K}}_\mathrm{s} :{\mathbb {J}}:\varvec{\sigma }^{\left( 2\right) }=\left( {\mathbb {T}}-{\mathbb {J}}_\mathrm{s} \right) :{\mathbb {J}}:\varvec{\sigma }^{\left( 2\right) }=\left( {\mathbb {T}}-\frac{1}{2}{\mathbf {T}}\otimes {\mathbf {T}}\right) :\left( \frac{1}{3}{\mathbf {I}}\otimes {\mathbf {I}}\right) :\varvec{\sigma }^{\left( 2\right) } \nonumber \\&\quad =\frac{1}{3}{\mathbb {T}}:\left( {\mathbf {I}}\otimes {\mathbf {I}}\right) :\varvec{\sigma }^{\left( 2\right) }-\frac{1}{6}{\mathbf {T}}\left( {\mathbf {T}}:{\mathbf {I}}\right) \left( {\mathbf {I}}:\varvec{\sigma }^{\left( 2\right) }\right) =\frac{1}{3}\left( {\mathbb {T}}:{\mathbf {I}}\right) \left( {\mathbf {I}}:\varvec{\sigma }^{\left( 2\right) }\right) -\frac{1}{3}{\mathbf {T}}\hbox {tr}^{\left( 2\right) } \nonumber \\&\quad =\frac{1}{3}{\mathbf {T}}\hbox {tr}^{\left( 2\right) }-\frac{1}{3}{\mathbf {T}}\hbox {tr}\varvec{\sigma }^{\left( 2\right) }=0\,\, \text{ on } \Gamma _{{ c}} , \end{aligned}$$
(A4)
$$\begin{aligned}&{\mathbb {K}}_\mathrm{s} :{\mathbb {K}}:\varvec{\sigma }^{\left( 2\right) }=\left( {\mathbb {T}}-{\mathbb {J}}_\mathrm{s} \right) :\left( {\mathbb {I}}-{\mathbb {J}}\right) :\varvec{\sigma }^{\left( 2\right) }= \left[ {\mathbb {T}}:{\mathbb {I}}-{\mathbb {J}}_\mathrm{s} :{\mathbb {I}}-\left( {\mathbb {T}}-{\mathbb {J}}_\mathrm{s} \right) :{\mathbb {J}}\right] :\varvec{\sigma }^{\left( 2\right) } \nonumber \\&\quad =\left[ {\mathbb {T}}:{\mathbb {I}}-{\mathbb {J}}_\mathrm{s} :\left( {\mathbb {K}}+{\mathbb {J}}\right) -{\mathbb {K}}_\mathrm{s} :{\mathbb {J}}\right] :\varvec{\sigma }^{\left( 2\right) }= \left[ {\mathbb {T}}:{\mathbb {I}}-{\mathbb {J}}_\mathrm{s} :{\mathbb {K}}-{\mathbb {J}}_\mathrm{s} :{\mathbb {J}}\right] :\varvec{\sigma }^{\left( 2\right) } \nonumber \\&\quad =\mathbf {T\varvec{\sigma } }^{\left( 2\right) }{\mathbf {T}}-\left( -\frac{1}{3}\sigma _{rr}^{\left( 2\right) } +\frac{1}{6}\sigma _{\theta \theta }^{\left( 2\right) } +\frac{1}{6}\sigma _{zz}^{\left( 2\right) } \right) {\mathbf {T}}-\frac{1}{3}\left( \sigma _{rr}^{\left( 2\right) } +\sigma _{\theta \theta }^{\left( 2\right) } +\sigma _{zz}^{\left( 2\right) } \right) {\mathbf {T}}\nonumber \\&\quad =\mathbf {T\varvec{\sigma } }^{\left( 2\right) }{\mathbf {T}}-\frac{1}{2}\left( \sigma _{\theta \theta }^{\left( 2\right) } +\sigma _{zz}^{\left( 2\right) } \right) {\mathbf {T}} \text{= }\sigma _{\theta \theta }^{\left( 2\right) } {\mathbf {e}}_{\theta } \otimes {\mathbf {e}}_{\theta } +\sigma _{zz}^{\left( 2\right) } {\mathbf {e}}_{z} \otimes {\mathbf {e}}_{z} -\frac{1}{2}\left( \sigma _{\theta \theta }^{\left( 2\right) } +\sigma _{zz}^{\left( 2\right) } \right) {\mathbf {T}}\,\, \text{ on } \Gamma _{{ c}} . \end{aligned}$$
(A5)

Using Eqs. (A2)–(A5) in Eq. (A1) yields

$$\begin{aligned} \varvec{\sigma }_\mathrm{s}= & {} \left[ \left( \frac{2k_\mathrm{s} }{9k^{\left( 2\right) }}-\frac{k_\mathrm{s} }{3\mu ^{\left( 2\right) }}\right) \sigma _{rr}^{\left( 2\right) } +\left( \frac{2k_\mathrm{s} }{9k^{\left( 2\right) }}+\frac{k_\mathrm{s} }{6\mu ^{\left( 2\right) }}+\frac{\mu _\mathrm{s} }{2\mu ^{\left( 2\right) }}\right) \sigma _{\theta \theta }^{\left( 2\right) }\right. \nonumber \\&\quad \left. +\left( \frac{2k_\mathrm{s} }{9k^{\left( 2\right) }}+\frac{k_\mathrm{s} }{6\mu ^{\left( 2\right) }}-\frac{\mu _\mathrm{s} }{2\mu ^{\left( 2\right) }}\right) \sigma _{zz}^{\left( 2\right) } \right] {\mathbf {e}}_{\theta } \otimes {\mathbf {e}}_{\theta } \nonumber \\&\quad +\left[ \left( \frac{2k_\mathrm{s} }{9k^{\left( 2\right) }}-\frac{k_\mathrm{s} }{3\mu ^{\left( 2\right) }}\right) \sigma _{rr}^{\left( 2\right) } +\left( \frac{2k_\mathrm{s} }{9k^{\left( 2\right) }}+\frac{k_\mathrm{s} }{6\mu ^{\left( 2\right) }}-\frac{\mu _\mathrm{s} }{2\mu ^{\left( 2\right) }}\right) \sigma _{\theta \theta }^{\left( 2\right) } \right. \nonumber \\&\quad \left. +\left( \frac{2k_\mathrm{s} }{9k^{\left( 2\right) }}+\frac{k_\mathrm{s} }{6\mu ^{\left( 2\right) }}+\frac{\mu _\mathrm{s} }{2\mu ^{\left( 2\right) }}\right) \sigma _{zz}^{\left( 2\right) } \right] {\mathbf {e}}_{z} \otimes {\mathbf {e}}_{z} \,\, \text{ on } \Gamma _{{ c}} . \end{aligned}$$
(A6)

Based on the third shear-lag assumption listed in Eq. (9),

$$\begin{aligned} \sigma _{rr}^{(i)}<<\sigma _{zz}^{(i)} \text{, }\,\,\,\,\,\,\sigma _{\theta \theta }^{(i)}<<\sigma _{zz}^{(i)}\,\, \text{( }i=1,\,2). \end{aligned}$$
(A7)

Then, Eq. (A6) can be simplified as, upon using Eq. (A7),

$$\begin{aligned} \varvec{\sigma }_\mathrm{s}= & {} \left[ \left( \frac{2k_\mathrm{s} }{9k^{\left( 2\right) }}+\frac{k_\mathrm{s} }{6\mu ^{\left( 2\right) }}-\frac{\mu _\mathrm{s} }{2\mu ^{\left( 2\right) }}\right) \sigma _{zz}^{\left( 2\right) } \right] {\mathbf {e}}_{\theta } \otimes {\mathbf {e}}_{\theta } \nonumber \\&+\left[ \left( \frac{2k_\mathrm{s} }{9k^{\left( 2\right) }}+\frac{k_\mathrm{s} }{6\mu ^{\left( 2\right) }}+\frac{\mu _\mathrm{s} }{2\mu ^{\left( 2\right) }}\right) \sigma _{zz}^{\left( 2\right) } \right] {\mathbf {e}}_{z} \otimes {\mathbf {e}}_{z} \,\, \text{ on } \Gamma _{{ c}} . \end{aligned}$$
(A8)

From Eq. (A8), it follows that

$$\begin{aligned} \sigma _{\theta \theta }^\mathrm{s} =\left( \frac{2k_\mathrm{s} }{9k^{\left( 2\right) }}+\frac{k_\mathrm{s} }{6\mu ^{\left( 2\right) }}-\frac{\mu _\mathrm{s} }{2\mu ^{\left( 2\right) }}\right) \sigma _{zz}^{\left( 2\right) } ,\quad \tau _{\theta z}^\mathrm{s} =0,\quad \sigma _{zz}^\mathrm{s} =\left( \frac{2k_\mathrm{s} }{9k^{\left( 2\right) }}+\frac{k_\mathrm{s} }{6\mu ^{\left( 2\right) }}+\frac{\mu _\mathrm{s} }{2\mu ^{\left( 2\right) }}\right) \sigma _{zz}^{\left( 2\right) } . \end{aligned}$$
(A9)

These are the surface stress components listed in Eq. (15), thereby completing the derivation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, JY., Gu, CS., Gu, ST. et al. Shear-lag model for discontinuous fiber-reinforced composites with a membrane-type imperfect interface. Acta Mech 231, 4717–4734 (2020). https://doi.org/10.1007/s00707-020-02768-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02768-7

Navigation