Skip to main content
Log in

Nonlinear bending analysis of hyperelastic Mindlin plates: a numerical approach

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, a numerical solution strategy is proposed for studying the large deformations of rectangular plates made of hyperelastic materials in the compressible and nearly incompressible regimes. The plate is considered to be Mindlin-type, and material nonlinearities are captured based on the Neo-Hookean model. Based on the Euler–Lagrange description, the governing equations are derived using the minimum total potential energy principle. The tensor form of equations is replaced by a novel matrix–vector format for the computational aims. In the solution strategy, based on the variational differential quadrature technique, a new numerical approach is proposed by which the discretized governing equations are directly obtained through introducing differential and integral matrix operators. Fast convergence rate, computational efficiency and simple implementation are advantages of this approach. The results are first validated with available data in the literature. Selected numerical results are then presented to investigate the nonlinear bending behavior of hyperelastic plates under various types of boundary conditions in the compressible and nearly incompressible regimes. The results reveal that the developed approach has a good performance to address the large deformation problem of hyperelastic plates in both regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

\({\mathbf {e}}_{i}\) :

Scalar base vectors

\({\mathbf {A}}_{p*q}\) :

\(p*q\) matrix

\(A_{ij}\) :

ij element of matrix \({\mathbf {A}}\)

\(\mathbb {A}_{{{\varvec{P}}}*{\varvec{Q}};r*s}\) :

\({\varvec{P}}*{\varvec{Q}}\)-block matrix where each block is an \(r*s\) matrix

\({\mathbf {A}}_{{\varvec{MN}}}\) :

\({{\varvec{M,N}}}\) block element of block-matrix \(\mathbb {A}\)

\({\mathbf {A}}_{{\varvec{MN;}}ij}\) :

ij element of \({{\varvec{M,N}}}\) block element of block-matrix \(\mathbb {A}\)

\({\mathbf {A}}^{\mathrm {T}}={\mathrm {trans}} \left( {\mathbf {A}} \right) {\mathrm {,}}\) :

Transpose of \({\mathbf {A}}\)

\(\langle \mathbf{A}\rangle ={\mathrm {diag}}\left( {\mathbf {A}} \right) \) :

Diagonal of vector \({\mathbf {A}}\)

\(\cdot \) :

Dot product (simple inner product)

\(\hat{\mathbf{A}}=\left\lceil {\mathbf {A}} \right\rceil _{q}\) :

Reduction in tensor \({\mathbf {A}}\) to a q-order tensor

\({\mathbb {A}}=\llbracket {\mathbf {A}}\rrbracket _{d}\) :

Discretization of matrix \({\mathbf {A}}\) on d-domain

\(\breve{{\mathbb {A}}}=\langle {\mathbb {A}}\rangle _{\hbox {\char 098}}\) :

Each-block diagonal of block-matrix \(\mathbb {A}\)

\(\overline{\overline{\blacksquare }}=\llbracket \blacksquare \rrbracket _{d}\) :

Discretization of \(\blacksquare (=\hbox {Greek-letters})\) matrix on d-domain

\(\Delta \left( {\mathbf {A}} \right) \) :

Increment of \({\mathbf {A}}\)

\(\delta \left( {\mathbf {A}} \right) \) :

Variation of \({\mathbf {A}}\)

\(\nabla _{{\mathbf {X}}}\cdot \mathbf {A}=\mathrm {Div}\left( {\mathbf {A}} \right) \) :

Divergence with respect to material position vector

\({\nabla }_{{\mathbf {x}}}\left( {\mathbf {A}} \right) ={\mathrm {Grad}} \left( {\mathbf {A}} \right) \) :

Gradient with respect to material position vector

\({\mathbf {A}}_{,{\mathbf {B}}}=\frac{\partial {\mathbf {A}}}{\partial {\mathbf {B}}}=\partial _{{\mathbf {B}}}{\mathbf {A}}\) :

Partial derivative of \({\mathbf {A}}\) with respect to \({\mathbf {B}}\)

\(\mathbb {A}_{,\mathbb {B}}\) :

Discretized form of \({\mathbf {A}}_{,{\mathbf {B}}}(=\llbracket {\mathbf {A}}_{,{\mathbf {B}}} \rrbracket _{d})\)

\(\otimes \) :

Tensorial product

\({\circledast }\) :

Kronecker product

\(\circ \) :

Hadamard product

\(\left\{ {\begin{array}{l} {\mathbf {A}}\otimes {\mathbf {B=}}A_{ij}B_{kl}{\mathbf {e}}_{i}\otimes {\mathbf {e}}_{j}\otimes {\mathbf {e}}_{k}\otimes {\mathbf {e}}_{l} \\ {\mathbf {A}}\overline{\otimes }{\mathbf {B=}}A_{ik}B_{jl}{\mathbf {e}}_{i}\otimes {\mathbf {e}}_{j}\otimes {\mathbf {e}}_{k}\otimes {\mathbf {e}}_{l} \\ {\mathbf {A}}\underline{\otimes }{\mathbf {B=}}A_{il}B_{jk}{\mathbf {e}}_{i}\otimes {\mathbf {e}}_{j}\otimes {\mathbf {e}}_{k}\otimes {\mathbf {e}}_{l} \\ \end{array}} \right. ,\) :

Modified dyadic products of two second-order tensors

\(w_{0}\) :

Total energy density with respect to material unit volume

\(\varPi \) :

Total energy

\(\varPi ^\mathrm{ext}\) :

External energy term

\(\varPi ^\mathrm{int}\) :

Internal energy term

\(\varPi ^\mathrm{lag}\) :

Lagrange energy term

\({\mathbf {x,X}}\) :

Spatial/material position vector of a material point

\(d{\mathbf {x}},d{\mathbf {X}}\) :

Spatial/material line element vector

\(\forall _{t},A_{t},S_{t}\) :

Spatial volume/area/line

\(\forall _{0},A_{0},S_{0}\) :

Material volume/area/line

\(dV_{t},dV_{0}\) :

Spatial/material volume element

\(\mathfrak {B}_{0}\) :

Material configuration

\(\partial \mathfrak {B}_{0}^{\blacksquare }\) :

Material boundary configuration on \(\blacksquare \)

\({\mathbf {H}}\) :

Displacement gradient

\({\mathbf {F}}\) :

Deformation gradient

J :

Determinant of deformation gradient

\({\mathbf {P}}\) :

First Piola-Kirchhoff stress tensor

\({\mathbf {b}}_{{0}}\) :

Spatial body force vector per material unit volume

\(\nu \) :

Poisson’s ratio

E :

Young’s modulus

\(\mu \) :

Shear modulus

\(\kappa \) :

Bulk modulus

\(n_{1},n_{2},n_{3}\) :

Grid numbers in \(X_{1}\), \(X_{2}\) and \(X_{3}\) directions

n :

Total grid size \((=n_{1}\times n_{2}\times n_{3})\)

\({\mathbf {A}}^{{\circ \mathrm{n}}}\) :

\(=\underbrace{\mathbf{A}\circ \mathbf{A}\circ \ldots \circ \mathbf{A}}\)

\(\mathbf {1}_{m*n}\) :

\({=\left[ {\begin{array}{*{20}c} 1 &{} \cdots &{} 1\\ \vdots &{} \ddots &{} \vdots \\ 1 &{} \cdots &{} 1\\ \end{array} } \right] }_{m*n}\)

\(\mathbf {0}_{m*n}\) :

\({=\left[ {\begin{array}{*{20}c} 0 &{} \cdots &{} 0\\ \vdots &{} \ddots &{} \vdots \\ 0 &{} \cdots &{} 0\\ \end{array} } \right] }_{m*n}\)

References

  1. Attard, M.M., Hunt, G.W.: Hyperelastic constitutive modeling under finite strain. Int. J. Solids Struct. 41, 5327–5350 (2004)

    Article  Google Scholar 

  2. Mooney, M.: A theory of large elastic deformation. J. Appl. Phys. 11, 582–592 (1940)

    Article  Google Scholar 

  3. Rivlin, R., Saunders, D.: A critical study of the Hopkinson pressure bar. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 240, 509–525 (1948)

    Google Scholar 

  4. Ogden, R.W.: Large deformation isotropic elasticity on the correlation of theory and experiment for incompressible rubberlike solids. Proc. R. Soc. Lond. A Math. Phys. Sci. 326(1567), 565–584 (1972)

    MATH  Google Scholar 

  5. Treloar, L.: The elasticity of a network of long-chain molecules—II. Trans. Faraday Soc. 39, 241–246 (1943)

    Article  Google Scholar 

  6. Marckmann, G., Verron, E.: Comparison of hyperelastic models for rubber-like materials. Rubber Chem. Technol. 79, 835–858 (2006)

    Article  Google Scholar 

  7. Knowles, J.K.: Large amplitude oscillations of a tube of incompressible elastic material. Q. Appl. Math. 18, 71–77 (1960)

    Article  MathSciNet  Google Scholar 

  8. Knowles, J.K.: On a class of oscillations in the finite-deformation theory of elasticity. J. Appl. Mech. 29, 283–286 (1962)

    Article  MathSciNet  Google Scholar 

  9. Erbay, H.A., Demiray, H.: Finite axisymmetric deformations of elastic tubes: an approximate method. J. Eng. Math. 29, 451–472 (1995)

    Article  MathSciNet  Google Scholar 

  10. Antman, S.S., Schuricht, F.: Incompressibility in rod and shell theories. Math. Model. Numer. Anal. 33, 289–304 (1999)

    Article  MathSciNet  Google Scholar 

  11. Itskov, M.: A generalized orthotropic hyperelastic material model with application to incompressible shells. Int. J. Numer. Methods Eng. 50, 1777–1799 (2001)

    Article  Google Scholar 

  12. Einstein, D.R., Reinhall, P., Nicosia, M., Cochran, R.P., Kunzelman, K.: Dynamic finite element implementation of nonlinear, anisotropic hyperelastic biological membranes. Comput. Methods Biomech. Biomed. Eng. 6, 33–44 (2003)

    Article  Google Scholar 

  13. Breslavsky, I.D., Amabili, M., Legrand, M.: Physically and geometrically non-linear vibrations of thin rectangular plates. Int. J. Nonlinear Mech. 58, 30–40 (2014)

    Article  Google Scholar 

  14. Breslavsky, I.D., Amabili, M., Legrand, M.: Nonlinear vibrations of thin hyperelastic plates. J. Sound Vib. 333, 4668–4681 (2014)

    Article  Google Scholar 

  15. Amabili, M., Balasubramanian, P., Breslavsky, I.D., Ferrari, G., Garziera, R., Riabova, K.: Experimental and numerical study on vibrations and static deflection of a thin hyperelastic plate. J. Sound Vib. 385, 81–92 (2016)

    Article  Google Scholar 

  16. Breslavsky, I.D., Amabili, M., Legrand, M.: Static and dynamic behavior of circular cylindrical shell made of hyperelastic arterial material. J. Appl. Mech. 83, 051002 (2016)

    Article  Google Scholar 

  17. Breslavsky, I.D., Amabili, M., Legrand, M., Alijani, F.: Axisymmetric deformations of circular rings made of linear and Neo-Hookean materials under internal and external pressure: A benchmark for finite element codes. Int. J. Nonlinear Mech. 84, 39–45 (2016)

    Article  Google Scholar 

  18. Zhao, Z., Zhang, W., Zhang, H., Yuan, X.: Some interesting nonlinear dynamic behaviors of hyperelastic spherical membranes subjected to dynamic loads. Acta Mech. 230, 3003–3018 (2019)

    Article  MathSciNet  Google Scholar 

  19. Amabili, M., Breslavsky, I.D., Reddy, J.N.: Nonlinear higher-order shell theory for incompressible biological hyperelastic materials. Comput. Methods Appl. Mech. Eng. 346, 841–861 (2019)

    Article  MathSciNet  Google Scholar 

  20. Faghih Shojaei, M., Ansari, R.: Variational differential quadrature: a technique to simplify numerical analysis of structures. Appl. Math. Model. 49, 705–738 (2017)

    Article  MathSciNet  Google Scholar 

  21. Ansari, R., Hasrati, E., Shakouri, A.H., Bazdid-Vahdati, M., Rouhi, H.: Nonlinear large deformation analysis of shells using the variational differential quadrature method based on the six-parameter shell theory. Int. J. Nonlinear Mech. 106, 130–143 (2018)

    Article  Google Scholar 

  22. Hasrati, E., Ansari, R., Torabi, J.: A novel numerical solution strategy for solving nonlinear free and forced vibration problems of cylindrical shells. Appl. Math. Model. 53, 653–672 (2018)

    Article  MathSciNet  Google Scholar 

  23. Ansari, R., Torabi, J., Faghih Shojaei, M., Hasrati, E.: Buckling analysis of axially-loaded functionally graded carbon nanotube-reinforced composite conical panels using a novel numerical variational method. Compos. Struct. 157, 398–411 (2016)

    Article  Google Scholar 

  24. Ansari, R., Shahabodini, A., Faghih Shojaei, M.: Vibrational analysis of carbon nanotube-reinforced composite quadrilateral plates subjected to thermal environments using a weak formulation of elasticity. Compos. Struct. 139, 167–187 (2016)

    Article  Google Scholar 

  25. Ansari, R., Torabi, J., Shojaei, M.F.: Vibrational analysis of functionally graded carbon nanotube-reinforced composite spherical shells resting on elastic foundation using the variational differential quadrature method. Eur. J. Mech. A/Solids 60, 166–182 (2016)

    Article  MathSciNet  Google Scholar 

  26. Shahabodini, A., Ansari, R., Darvizeh, M.: Atomistic-continuum modeling of vibrational behavior of carbon nanotubes using the variational differential quadrature method. Compos. Struct. 185, 728–747 (2018)

    Article  Google Scholar 

  27. Faraji Oskouie, M., Ansari, R., Rouhi, H.: Nonlinear bending and postbuckling analysis of FG nanoscale beams using the two-phase fractional nonlocal continuum mechanics. Eur. Phys. J. Plus 134, 527 (2019)

    Article  Google Scholar 

  28. Faraji Oskouie, M., Hassanzadeh-Aghdam, M.K., Ansari, R.: A new numerical approach for low velocity impact response of multiscale-reinforced nanocomposite plates. Eng. Comput. (2019). https://doi.org/10.1007/s00366-019-00851-9

    Article  Google Scholar 

  29. Faraji Oskouie, M., Ansari, R., Rouhi, R.: Studying nonlinear thermomechanical wave propagation in a viscoelastic layer based upon the Lord–Shulman theory. Mech. Mater. Struct. Adv. (2019). https://doi.org/10.1080/15376494.2018.1495793

    Article  MATH  Google Scholar 

  30. Hassani, R., Ansari, R., Rouhi, H.: Large deformation analysis of 2D hyperelastic bodies based on the compressible nonlinear elasticity: a numerical variational method. Int. J. Nonlinear Mech. 116, 39–54 (2019)

    Article  Google Scholar 

  31. Hassani, R., Ansari, R., Rouhi, H.: Large deformation analysis in the context of 3D compressible nonlinear elasticity using the VDQ method. Int. J. Numer. Methods Eng. 118, 345–370 (2019)

    Article  Google Scholar 

  32. Hassani, R., Ansari, R., Rouhi, H.: An efficient numerical approach to the micromorphic hyperelasticity. Contin. Mech. Thermodyn. (2019). https://doi.org/10.1007/s00161-019-00808-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ansari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, R., Hassani, R., Faraji Oskouie, M. et al. Nonlinear bending analysis of hyperelastic Mindlin plates: a numerical approach. Acta Mech 232, 741–760 (2021). https://doi.org/10.1007/s00707-020-02756-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02756-x

Navigation