Skip to main content
Log in

Surface waves in porous nonlocal thermoelastic orthotropic medium

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The present article deals with the propagation of Rayleigh surface waves in a homogeneous orthotropic medium based on Eringen’s nonlocal thermoelasticity. This thermoelastic problem is studied under the purview of Green–Naghdi model type III of hyperbolic thermoelasticity in the presence of voids. The normal mode analysis is employed to obtain a vector matrix differential equation which is then solved by an eigenvalue approach. The frequency equations for different cases are derived. The path of surface particles during Rayleigh wave propagation is found to be elliptical. In order to illustrate the analytical developments, the numerical solution is carried out and the computer-simulated results with respect to phase velocity, attenuation coefficient and specific loss are presented graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Eringen, A.C.: Theory of nonlocal thermoelasticity. Int. J. Eng. Sci 12, 1063–1077 (1974)

    Article  MATH  Google Scholar 

  2. Eringen, A.C.: Memory dependent nonlocal elastic solids. Lett. Appl. Eng. Sci 2(3), 145–149 (1974)

    MathSciNet  Google Scholar 

  3. Eringen, A.C.: Edge dislocation on nonlocal elasticity. Int. J. Eng. Sci 15, 177–183 (1977)

    Article  MATH  Google Scholar 

  4. Eringen, A.C.: A mixture theory of electromagnetism and superconductivity. Int. J. Eng. Sci 36(5/6), 525–543 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Eringen, A.C.: Nonlocal Continuum Theories. Springer, New York (2002)

    MATH  Google Scholar 

  6. Altan, B.S.: Uniqueness in the linear theory of nonlocal elasticity. Bull. Tech. Univ. Istanb. 37, 373–385 (1984)

    MathSciNet  MATH  Google Scholar 

  7. Eringen, A.C., Edelen, D.G.B.: On nonlocal elasticity. Int. J. Eng. Sci 10, 233–248 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eringen, A.C.: Nonlocal polar elastic continua. Int. J. Eng. Sci. 10, 1–16 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  9. Eringen, A.C.: On Rayleigh surface waves with small wave lengths. Lett. Appl. Eng. Sci. 1, 11–17 (1973)

    Google Scholar 

  10. Eringen, A.C.: Plane waves in nonlocal micropolar elasticity. Int. J. Eng. Sci. 22, 1113–1121 (1984)

    Article  MATH  Google Scholar 

  11. Acharya, D.P., Mondal, A.: Propagation of Rayleigh surface waves with small wavelengths in nonlocal visco-elastic solids. Sadhana 27, 605–612 (2002)

    Article  MATH  Google Scholar 

  12. Roy, I., Acharya, D.P., Acharya, S.: Rayleigh wave in a rotating nonlocal magneto-elastic half-plane. J. Theor. Appl. Mech. 45, 61–78 (2015)

    Article  MATH  Google Scholar 

  13. Khurana, A., Tomar, S.K.: Wave propagation in nonlocal microstretch solid. Appl. Math. Model. 40, 5885–6875 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yu Jun, Y., Tian, X.-G., Liu, X.-R.: Nonlocal thermoelasticity based on nonlocal heat conduction and nonlocal elasticity. Eur. J. Mech. A/Sol. 60, 238–253 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Khurana, A., Tomar, S.K.: Rayleigh-type waves in nonlocal micropolar solid half space. Ultrasonics 73, 162–168 (2017)

    Article  Google Scholar 

  16. Sing, D., Kaur, G., Tomar, S.K.: Waves in nonlocal elastic solid with voids. J. Elast. 128, 85–114 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nunziato, J.W., Cowin, S.C.: A non linear theory of elastic material with voids. Arch. Ration. Mech. Anal. 72, 175–201 (1979)

    Article  MATH  Google Scholar 

  18. Cowin, S.C., Nunziato, J.W.: Linear elastic materials with voids. J. Elast. 13, 125–147 (1983)

    Article  MATH  Google Scholar 

  19. Ieşan, D.: A theory of thermoelastic materials with voids. Acta Mech. 60, 67–89 (1986)

    Article  Google Scholar 

  20. Ieşan, D.: A theory of initially stressed thermoelastic materials with voids. An. St. Univ. Iasi Mati 33, 167–184 (1987)

    MathSciNet  MATH  Google Scholar 

  21. Ciarletta, M., Scarpetta, E.: Reciprocity and variational theorems in a generalized thermoelastic theory for non simple materials with voids. Riv. Mat. Univ. Parma 16, 183–194 (1990)

    MathSciNet  MATH  Google Scholar 

  22. Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solid 15, 299–309 (1967)

    Article  MATH  Google Scholar 

  23. Green, A.E., Lindsay, K.A.: Thermoelasticity. J. Elast. 2, 1–7 (1972)

    Article  MATH  Google Scholar 

  24. Green, A.E., Naghdi, P.M.: A re-examination of the basic postulates of thermomechanics. Proc. R. Soc. Lond. Ser. A 432, 171–194 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  25. Green, A.E., Naghdi, P.M.: On damped heat waves in an elastic solid. J. Therm. Stress. 15, 252–264 (1992)

    Article  Google Scholar 

  26. Green, A.E., Naghdi, P.M.: Thermoelasticity without energy dissipation. J. Elast. 31, 189–208 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ignaczak, J., Ostoja-Starzewski, M.: Thermoelasticity with Finite Wave Speeds. Oxford University Press, Oxford (2010)

    MATH  Google Scholar 

  28. Chandrasekharaih, D.S.: Hyperbolic thermoelasticity: a review of recent literature. Appl. Mech. Rev. 51(12), 705–729 (1998)

    Article  Google Scholar 

  29. Chandrasekharaiah, D.S., Srikantaiah, K.R.: On temperature rate dependent thermoelastic Rayleigh waves in half-space. Gerlands Beirtage Zur Geophys. 93, 133–141 (1984)

    Google Scholar 

  30. Dwan, N.C., Chakraborty, S.K.: On Rayleigh waves in Green–Lindsay’s model of generalized thermoelastic media. Indian J. Pure Appl. Math. 20(3), 276–283 (1988)

    Google Scholar 

  31. Rossikin, Y.A., Shitikova, M.V.: Nonstationary Rayleigh waves on the thermally-insulated surfaces of some thermoelastic bodies of revolution. Acta Mech. 150(1–2), 87–105 (2001)

    Article  MATH  Google Scholar 

  32. Chakraborty, S.K., Pal, R.P.: Thermoelastic Rayleigh waves in transversely isotropic solids. Pure Appl. Geophys. 76, 79–86 (1969)

    Article  Google Scholar 

  33. Chadwick, P., Seet, L.T.C.: Wave propagation in a transversely isotropic heat-conducting elastic material. Mathematica 17, 255–274 (1970)

    MathSciNet  MATH  Google Scholar 

  34. Abd-Alla, A.M., Abo-Dahab, S.M., Bayones, F.S.: Propagation of Rayleigh waves in magneto-thermoelastic half-space of a homogeneous orthotropic material under the effect of rotation, initial stress and gravity field. J. Vib. Control 19(9), 1395–1420 (2013)

    Article  MathSciNet  Google Scholar 

  35. Abd-Alla, A.M., Abo-Dahab, S.M., Hammad, H.A.H.: Propagation of Rayleigh waves in generalized magneto-thermoelastic orthotropic material under initial stress and gravity field. Appl. Math. Model. 3, 2981–3000 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Singh, B., Kumari, S., Singh, J.: Propagation of the Rayleigh wave in an initially stressed transversely isotropic dual phase lag magnetothermoelastic half space. J. Eng. Phys. Thermophys. 87(6), 1539–1547 (2014)

    Article  Google Scholar 

  37. Biswas, S., Mukhopadhyay, B., Shaw, S.: Rayleigh surface wave propagation in orthotropic thermoelastic solids under three-phase-lag model. J. Therm. Stress. 40(4), 403–419 (2017)

    Article  Google Scholar 

  38. Biswas, S., Abo-Dahab, S.M.: Effect of phase-lags on Rayleigh waves in magneto-thermoelastic orthotropic medium. Appl. Math. Model. 59, 713–727 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  39. Abd-Alla, A.N., Al-Dawy, A.A.S.: Thermal relaxation times effect on Rayleigh waves in generalized thermoelastic media. J. Therm. Stress. 24(4), 367–382 (2001)

    Article  Google Scholar 

  40. Wojnar, R.: Rayleigh waves in thermoelasticity with relaxation times. In: International Conference on Surface Waves in Plasma and Solids, Yugoslavia, Sept. 5–11, 1985, World Scientific, Singapore (1986)

  41. Biswas, S.: Stroh analysis of Rayleigh waves in anisotropic thermoelastic medium. J. Therm. Stress. 41(5), 627–644 (2018)

    Article  Google Scholar 

  42. Das, N.C., Bhakta, P.C.: Eigen function expansion method to the solution of simultaneous equations and its application in mechanics. Mech. Res. Commun. 12, 19–29 (1985)

    Article  MATH  Google Scholar 

  43. Das, N.C., Lahiri, A., Giri, R.R.: Eigen value approach to generalized thermoelasticity. Indian J. Pure Appl. Math 28(12), 1573–1594 (1997)

    MathSciNet  MATH  Google Scholar 

  44. Biswas, S., Mukhopadhyay, B.: Eigenfunction expansion method to analyze thermal shock behavior in magneto-thermoelastic orthotropic medium under three theories. J. Therm. Stress. 41(3), 366–382 (2018)

    Article  Google Scholar 

  45. Biswas, S., Mukhopadhyay, B.: Eigenfunction expansion method to characterize Rayleigh wave propagation in orthotropic medium with phase-lags. Waves Random Complex Media 29(4), 722–742 (2019)

    Article  MathSciNet  Google Scholar 

  46. Puri, P., Cowin, S.C.: Plane waves in linear elastic materials with voids. J. Elast. 15, 167–183 (1985)

    Article  MATH  Google Scholar 

  47. Kolsky, H.: Stress Waves in Solids. Dover Press, New York (1963)

    MATH  Google Scholar 

  48. Nowinski, J.L.: Theory of Thermoelasticity with Applications, Mechanics of Surface Structures (1978)

  49. Nayfeh, A., Nemat-Nasser, S.: Thermoelastic waves in solids with thermal relaxation. Acta Mech. 12, 53–69 (1971)

    Article  MATH  Google Scholar 

  50. Agarwal, V.K.: On surface waves in generalized thermoelasticity. J. Elast. 8, 171–177 (1978)

    Article  MATH  Google Scholar 

  51. Bijarnia, R., Singh, B.: Propagation of plane waves in a rotating transversely isotropic two temperature generalized thermoelastic solid half-space with voids. Int. J. Appl. Mech. Eng. 21(2), 285–301 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The author is thankful to the reviewers for their valuable suggestion for the improvement of the paper.

Funding

Research work of S. Biswas is financially supported by University Project Grant (1947/R-2019) of University of North Bengal, Darjeeling-734013, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddhartha Biswas.

Ethics declarations

Conflict of interest

There is no conflict of interests.

Data availability statement

No data are used in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, S. Surface waves in porous nonlocal thermoelastic orthotropic medium. Acta Mech 231, 2741–2760 (2020). https://doi.org/10.1007/s00707-020-02670-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02670-2

Navigation