Skip to main content
Log in

Tuning the working frequency of elastic metamaterials by heat

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The limitation of passive elastic metamaterials is their fixed and narrow working frequency range. In this work, the manipulation of elastic waves using heat by an elastic metamaterial with resonant microstructures is presented for the first time. The effective density of the elastic metamaterial at different wave frequencies and temperatures is determined using effective continuum theory. We proved that the elastic metamaterial can have not only frequency - but also temperature-dependent negative effective density. By properly selecting materials for the building block, the effective mass density of the elastic metamaterial can be varied by increasing the temperature of the material. Elastic wave attenuation, waveguiding and wave focusing of the elastic metamaterial are then demonstrated by controlling the temperature of the elastic metamaterial. The developed methodology could significantly influence research areas including elastic wave attenuation, waveguiding, wave imaging and numerous other applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lee, S.H., et al.: Acoustic metamaterial with negative modulus. J. Phys. Condens. Matter 21, 175704 (2009)

    Article  Google Scholar 

  2. Liu, A.P., Zhou, X.M., Huang, G.L., Hu, G.K.: Super-resolution imaging by resonant tunneling in anisotropic acoustic metamaterials. J. Acoust. Soc. Am. 132, 2800–2806 (2012)

    Article  Google Scholar 

  3. Liu, X.N., Hu, G.K., Huang, G.L., Sun, C.T.: An elastic metamaterial with simultaneously negative mass density and bulk modulus. Appl. Phys. Lett. 98, 251907 (2011)

    Article  Google Scholar 

  4. Miniaci, M., Krushynska, A., Bosia, F., Pugno, N.M.: Large scale mechanical metamaterials as seismic shields. N. J. Phys. 18, 083041 (2016)

    Article  Google Scholar 

  5. Oudich, M., Assouar, M.B., Hou, Z.L.: Propagation of acoustic waves and waveguiding in a two-dimensional locally resonant phononic crystal plate. Appl. Phys. Lett. 97, 193503 (2010)

    Article  Google Scholar 

  6. Wu, Y., Lai, Y., Zhang, Z.Q.: Elastic metamaterials with simultaneously negative effective shear modulus and mass density. Phys. Rev. Lett. 107, 105506 (2011)

    Article  Google Scholar 

  7. Xiao, Y., Wen, J., Wen, X.: Flexural wave band gaps in locally resonant thin plates with periodically attached spring–mass resonators. J. Phys. D 45, 195401 (2012)

    Article  Google Scholar 

  8. Sang, S., Wang, Z.: A design of elastic metamaterials with multi-negative pass bands. Acta Mech. 229, 2647–2655 (2018)

    Article  Google Scholar 

  9. Sang, S., Sandgren, E., Wang, Z.: Wave attenuation and negative refraction of elastic waves in a single-phase elastic metamaterial. Acta Mech. 229, 2561 (2018)

    Article  Google Scholar 

  10. Liu, Z., Zhang, X., Mao, Y., et al.: Locally resonant sonic materials. Science 289, 1734 (2000)

    Article  Google Scholar 

  11. Sang, S., Sandgren, E.: Study of two-dimensional acoustic metamaterial based on lattice system. J. Vib. Eng. Technol. 6, 513 (2018)

    Article  Google Scholar 

  12. Sang, S., Mhannawee, A., Wang, Z.: A design of active elastic metamaterials with negative mass density and tunable bulk modulus. Acta Mech. 230, 1003–1008 (2019)

    Article  Google Scholar 

  13. Sang, S., Sandgren, E.: Study of in-plane wave propagation in 2-dimensional anisotropic elastic metamaterials. J. Vib. Eng. Technol. 7, 63 (2019)

    Article  Google Scholar 

  14. Sang, S., et al.: A new approach to generate local resonator for the application of acoustic metamaterials. IOP Conf. Ser. Mater. Sci. Eng. 272, 012027 (2017)

    Article  Google Scholar 

  15. Fang, N., Xi, D., Xu, J., et al.: Ultrasonic metamaterials with negative modulus. Nat. Mater. 5, 452 (2006)

    Article  Google Scholar 

  16. Li, J., Chan, C.: Double-negative acoustic metamaterial. Phys. Rev. E 70, 055602 (2004)

    Article  Google Scholar 

  17. Ding, Y., Liu, Z., Qiu, C., et al.: Metamaterial with simultaneously negative bulk modulus and mass density. Phys. Rev. Lett. 99, 093904 (2007)

    Article  Google Scholar 

  18. Lai, Y., Wu, Y., Sheng, P., et al.: Hybrid elastic solids. Nat. Mater. 10, 620 (2011)

    Article  Google Scholar 

  19. Wu, Y., Lai, Y., Zhang, Z.Q.: Elastic metamaterials with simultaneously negative effective shear modulus and mass density. Phys. Rev. Lett. 107, 105506 (2011)

    Article  Google Scholar 

  20. Zhu, R., Chen, Y.Y., Barnhart, M.V., Hu, G.K., Sun, C.T., Huang, G.L.: Experimental study of an adaptive elastic metamaterial controlled by electric circuits. Appl. Phys. Lett. 108, 011905 (2016)

    Article  Google Scholar 

  21. Zhu, Z.W., Deng, Z.C.: Wave propagation in adaptive honeycomb-based materials with high connectivity. Smart Mater. Struct. 25, 085003 (2016)

    Article  Google Scholar 

  22. Chen, Y.Y., Hu, G.K., Huang, G.L.: An adaptive metamaterial beam with hybrid shunting circuits for extremely broadband control of flexural waves. Smart Mater. Struct. 25, 105036 (2016)

    Article  Google Scholar 

  23. Chen, Y.Y., et al.: A hybrid elastic metamaterial with negative mass density and tunable bending stiffness. J. Mech. Phys. Solids 105, 179–198 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work carried out in this report is funded and supported by the National Natural Science Foundation of China (Grant No. 11872191).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johnson Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Liu, Z. & Lee, J. Tuning the working frequency of elastic metamaterials by heat. Acta Mech 231, 1477–1484 (2020). https://doi.org/10.1007/s00707-019-02599-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02599-1

Navigation