Skip to main content
Log in

On the quasi-stationary problem of heat conduction for a homogeneous half-space with composite coating

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The quasi-stationary problem of heat conduction for a homogeneous half-space and composite layer being a coating is considered in the paper. Heat fluxes distributed in a strip and moving on the boundary plane of the considered body with a constant velocity are taken into consideration. The composite layer being the coating is assumed to be composed of four repeated periodical beams with rectangular cross sections. The homogenized model with microlocal parameters is used for the description of the composite layer. Some special cases of an influence of composite components and their locations on the temperature field are analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

(xy):

The Cartesian dimensionless moving coordinates related to dimension c

2c :

The width of the heating strip (m)

t :

The time (s)

\(a_1^*, a^{*}, b_1^*, b^{*}\) :

The dimensions of the unit cell of coating (m)

\(T_0 (x, y)\) :

Temperature in the homogeneous substrate at the point (xy) (K)

\(T_1 (x, y)\) :

The macrotemperature in the composite coating (macrotemperature is an approximation of the temperature) at the point (xy) (K)

\(\mathbf{h}_i \) :

Heat flux vector in the ith kind of component of the composite coating (\(\hbox {W m}^{-2}\))

\(\mathbf{q}\) :

Heat flux vector (\(\hbox {W m}^{-2}\))

\(K_0\) :

Coefficient of thermal conductivity of the substrate (\(\hbox {W m}^{-1}\,\hbox {K}^{-1}\))

\(K_i\) :

The thermal conductivity coefficients of the coating components (\(\hbox {W m}^{-1}\,\hbox {K}^{-1}\)), \(i=1,2,3,4\)

\(c_0\) :

The specific heat of the substrate (\(\hbox {J}\,\hbox {kg}^{-1}\,\hbox {K}^{-1}\))

\(c_i\) :

The specific heats of the components of a unit cell (\(\hbox {J}\,\hbox {kg}^{-1}\,\hbox {K}^{-1}\)), \(i=1,2,3,4\)

\(K_x , K_y\) :

The effective thermal moduli in the homogenized model with microlocal parameters (\(\hbox {W m}^{-1}\,\hbox {K}^{-1}\))

V :

The constant velocity of heating sources (\(\hbox {m}\,\hbox {s}^{-1}\))

\({\hbox {Pe}}_0\) :

The Peclet number for the substrate

\({\hbox {Pe}}_i\) :

The Peclet number of the ith component of the coating, \(i=1,2,3,4\)

\(\rho _0\) :

The mass density of the substrate (\(\hbox {kg}\,\hbox {m}^{-3}\))

\(\rho _i\) :

The mass densities of the components of the unit cell (\(\hbox {kg}\,\hbox {m}^{-3}\)), \(i=1,2,3,4\)

\(\eta _1 =a_1 /a\) :

The saturation coefficient of fundamental unit in the direction of x (–)

\(\eta _2 =b_1 /b\) :

The saturation coefficient of fundamental unit in the direction of y (–)

\(\varDelta _i\) :

The regions occupied the the ith kind of materials, \(i=1,2,3,4\)

i :

The number of the ith component of the coating, \(i=1,2,3,4\).

References

  1. Sant, C., Daia, M.B., Aubert, P., Labdi, S., Houdy, P.: Interface effect on tribological properties of titanium–titanium nitride nanolaminated structures. Surf. Coat. Technol. 127, 167–173 (2000). https://doi.org/10.1016/S0257-8972(00)00663-0

    Article  Google Scholar 

  2. Lackner, J.M., Major, L., Kot, M.: Microscale interpretation of tribological phenomena in Ti/TiN soft-hard multilayer coatings on soft austenite steel substrates. Bull. Polish Acad. Sci. Tech. Sci. 59, 343–355 (2011). https://doi.org/10.2478/v10175-011-0042-x

    Article  Google Scholar 

  3. Tekaya, A., Benameur, T., Labdi, S., Aubert, P.: Effect of Ti/TiN multilayer protective nanocoatings on Zr-based metallic glasses mechanical performance. Thin Solid Films 593, 215–221 (2013). https://doi.org/10.1016/j.tsf.2013.05.049

    Article  Google Scholar 

  4. Grigoriev, S.N., Vereshchaka, A.A.: Methodology of formation of multi-layered coatings for carbide cutting tools. Mech. Ind. 17, 706–720 (2016). https://doi.org/10.1051/meca/2016065

    Article  Google Scholar 

  5. Xu, Y.X., Chen, L., Pei, F., Du, Y.: Structure and thermal properties of TiAlN/CrN multilayered coatings with various modulation ratios. Surf. Coat. Technol. 704, 512–518 (2016). https://doi.org/10.1016/j.surfcoat.2016.07.055

    Article  Google Scholar 

  6. Panagopoulos, G.N., Georgiou, E.P., Tsoutsouva, M.G., Krompa, M.: Composite multilayered coatings on mild steel. J. Coat. Technol. Res. 8, 125–133 (2011). https://doi.org/10.1007/s11998-010-9278-x

    Article  Google Scholar 

  7. Zeng, X.T., Zhang, S., Tan, L.S.: Multilayered (Ti, Al) ceramic coating for high-speed machining applications. J. Vac. Sci. Technol. A Vac. Surf. Film (2001). https://doi.org/10.1116/1.1342868

    Article  Google Scholar 

  8. Shevchuk, V.A.: Analytical solution of nonstationary heat conduction problem for a half-space with a multilayer coating. J. Eng. Phys. Thermophys. 86, 450–459 (2013). https://doi.org/10.1007/s10891-013-0854-7

    Article  Google Scholar 

  9. Matysiak, S., Perkowski, D.M.: On heat conduction problems in a composite half-space with a nonhomogeneous coating. Heat Transf. Res. 47, 1141–1155 (2016). https://doi.org/10.1615/HeatTransRes.2016013425

    Article  Google Scholar 

  10. Kulchytsky-Zhyhailo, R., Matysiak, S.J., Perkowski, D.M.: On thermal analysis of periodic composite coatings for a homogeneous conductive layer. Int. Commun. Heat Mass Transf. 91, 210–215 (2018). https://doi.org/10.1016/j.icheatmasstransfer.2017.12.015

    Article  Google Scholar 

  11. Matysiak, S.J.: On certain problems of heat conduction in periodic composites. ZAMM 71, 524–528 (1991). https://doi.org/10.1002/zamm.19910711218

    Article  MathSciNet  Google Scholar 

  12. Matysiak, S.J., Ukhanska, O.M.: On two-dimensional heat conduction problem of a periodic stratified convective half-space with a moving heat source. Int. Commun. Heat Mass Transf. 24, 129–138 (1997). https://doi.org/10.1016/S0735-1933(96)00112-1

    Article  Google Scholar 

  13. Kulchytsky-Zhyhailo, R., Matysiak, S.J.: On heat conduction problem in a semi-infinite periodically laminated layer. Int. Commun. Heat Mass Transf. 32, 123–132 (2005). https://doi.org/10.1016/j.icheatmasstransfer.2004.08.023

    Article  Google Scholar 

  14. Kulczycki-Zyhajło, R., Matysiak, S.J.: On some heat conduction problem in a periodically two-layered body. Int. Commun. Heat Mass Transf. 32, 332–340 (2005). https://doi.org/10.1016/j.icheatmasstransfer.2004.05.014

    Article  Google Scholar 

  15. Kulchytsky-Zhyhailo, R., Matysiak, S.J.: On temperature distributions in a semi-infinite periodically stratified layer. Bull. Polish Acad. Sci. Tech. Sci. 50, 45–49 (2006)

    MATH  Google Scholar 

  16. Gründemann, H.: Homogenization techniques for composite media. In: Sanchez-Palencia, E., Zaoui, A. (eds.)Proceedings, Udine, Italy 1985. Springer, Berlin (1987). IX, 397 pp., DM 73. ISBN 3-540-17616-0 (Lecture Notes in Physics 272). ZAMM J. Appl. Math. Mech./Zeitschrift für Angew. Math. und Mech. (2007). https://doi.org/10.1002/zamm.19880680608

    MathSciNet  Google Scholar 

  17. Auriault J-L., Boutin, C., Geindreau, C.: Homogenization of Coupled Phenomena in Heterogenous Media. ISTE. Wiley, London, UK, ISBN 978-1-84821-161-2 (2009)

  18. Matine, A., Boyard, N., Cartraud, P., Legrain, G., Jarny, Y.: Modeling of thermophysical properties in heterogeneous periodic media according to a multi-scale approach: effective conductivity tensor and edge effects. Int. J. Heat Mass Transf. (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.036

    Article  Google Scholar 

  19. Matine, A., Boyard, N., Legrain, G., Jarny, Y., Cartraud, P.: Transient heat conduction within periodic heterogeneous media: a space-time homogenization approach. Int. J. Therm. Sci. 92, 217–229 (2015). https://doi.org/10.1016/j.ijthermalsci.2015.01.026

    Article  Google Scholar 

  20. Matysiak, S.J., Woźniak, C.: On the modelling of heat conduction problem in laminated bodies. Acta Mech. 65, 223–238 (1987). https://doi.org/10.1007/BF01176884

    Article  MATH  Google Scholar 

  21. Woźniak, C.: A nonstandard method of modelling of thermoelastic periodic composites. Int. J. Eng. Sci. 25, 483–498 (1987). https://doi.org/10.1016/0020-7225(87)90102-9

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This investigation was supported under the programme of the Ministry of Science and Higher Education under the name “Regional Initiative of Excellence” in 2019–2022 (project number 011/RID/2018/19; financing amount: 12 million PLN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanisław J. Matysiak.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulchytsky-Zhyhailo, R., Matysiak, S.J. & Perkowski, D.M. On the quasi-stationary problem of heat conduction for a homogeneous half-space with composite coating. Acta Mech 231, 1241–1251 (2020). https://doi.org/10.1007/s00707-019-02591-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02591-9

Navigation