Skip to main content

Advertisement

Log in

Identification of crack parameters and stress intensity factors in finite and semi-infinite plates solving inverse problems of linear elasticity

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A method for the detection of a single or multiple straight cracks in finite and semi-infinite plane structures is presented. This allows both the identification of crack parameters such as length, position, and inclination angles with respect to a reference coordinate system and the calculation of stress intensity factors (SIFs). The method is based on strains measured at different locations on the surface of a structure and the application of the dislocation technique of linear elasticity. Cracks and boundaries are modelled by continuous distributions of dislocation densities. This approach gives a set of singular integral equations with Cauchy kernels, which are solved using Gauss–Chebyshev numerical quadrature, and, in contrast to e.g. a finite element calculation, spares a discretization of the structure. Once knowing the dislocation densities, the strain at an arbitrary point can be calculated. The crack parameters as well as external loads are determined by solving the inverse problem with a genetic and a simulated annealing algorithm. Once knowing loading and crack parameters, the SIFs are subsequently calculated. With the presented approach, the unknown parameters can be determined very accurately, being aware of some restrictions, which are thoroughly investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bäcker, D., Ricoeur, A., Kuna, M.: Sensor concept based on piezoelectric PVDF films for the structural health monitoring of fatigue crack growth. Struct. Durab. Health Monit. 7, 1–22 (2011)

    Google Scholar 

  2. Bilby, B.A., Cottrell, A.H., Swinden, K.H.: The spread of plastic yield from a notch. Proc. R. Soc. A 272, 304–314 (1963)

    Google Scholar 

  3. Bilby, B.A., Eshelby, J.D.: Dislocations and the theory of fracture. In: Liebowitz, H. (ed.) Fracture. Academic Press, New York (1968)

    Google Scholar 

  4. Boukellif, R., Ricoeur, A.: Parameter identification for cracks in elastic plate structures based on remote strain fields. Int J Solids Struct 51, 2123–2132 (2014)

    Article  Google Scholar 

  5. Boukellif, R., Ricoeur, A.: Identification of crack positions and crack loading quantities from strain gauge data by inverse problem solution. Proc. Struct. Integr. 13, 85–90 (2018)

    Article  Google Scholar 

  6. Chatzi, E., Hiriyur, B., Waisman, H., Smyth, A.: Experimental application and enhancement of the XFEM-GA algorithm for the detection of flaws in structures. Comput. Struct. 89, 556–570 (2011)

    Article  Google Scholar 

  7. Comninou, M., Schmeuser, D.: The interface crack in a combined tension-compression and shear field. J. Appl. Mech. 46, 345–348 (1979)

    Article  Google Scholar 

  8. Comninou, M., Dundurs, J.: Effect of friction on the interface crack loaded in shear. J. Elast. 10(2), 203–212 (1982)

    Article  MathSciNet  Google Scholar 

  9. Comninou, M., Chang, F.-K.: Effects of partial closure and friction on a radial crack emanating from a circular hole. Int. J. Fract. 28, 29–36 (1985)

    Google Scholar 

  10. Dai, D.N.: Modelling cracks in finite bodies by distributed dislocation dipoles. Fatigue Fract. Eng. Mater. Struct. 25, 27–39 (2002)

    Article  Google Scholar 

  11. Dally, J.W., Sanford, R.J.: Strain-gauge methods for measuring the opening-mode stress-intensity factor, \(\text{ K }_{{\rm I}}\). Exp. Mech. 27, 381–388 (1987)

    Article  Google Scholar 

  12. Dundurs, J., Sendeckyi, G.P.: Behaviour of an edge dislocation near a bimetallic interface. J. Appl. Phys. 36, 3353–3354 (1965)

    Article  Google Scholar 

  13. Dundurs, J., Mura, T.: Interaction between an edge dislocation and a circular inclusion. J. Mech. Phys. Solids 12, 177–189 (1964)

    Article  MathSciNet  Google Scholar 

  14. Erdogan, F., Gupta, G.D.: Layered composites with an interface flaw. Int. J. Solids Struct. 7, 1089–1107 (1971)

    Article  Google Scholar 

  15. Erdogan, F., Gupta, G.D., Ratwani, M.: Interaction between a circular inclusion and an arbitrarily oriented crack. J. Appl. Mech. 41, 1007–1013 (1974)

    Article  Google Scholar 

  16. Erdogan, F., Gupta, G.D., Cook, T.S.: Numerical solution of singular integral equations. In: Sih, G.C. (ed.) Methods of Analysis and Solutions of Crack Problems. Noordhoff, Leyden (1973)

    Google Scholar 

  17. Gadala, M., McCullough, A.: On the finite element analysis of inverse problems in fracture mechanics. Eng. Comput. 16, 481–502 (1999)

    Article  Google Scholar 

  18. Galvanetto, U., Violaris, G.: Numerical investigation of a new damage detection method based on proper orthogonal decomposition. Mech. Syst. Signal Process. 21, 1346–1361 (2007)

    Article  Google Scholar 

  19. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Publishing Company, Boston (1989)

    MATH  Google Scholar 

  20. Han, J.-J., Dhanasekar, M.: Modelling cracks in arbitrarily shaped finite bodies by distribution of dislocation. Int. J. Solids Struct. 41, 399–411 (2004)

    Article  Google Scholar 

  21. Hills, D.A., Comninou, M.: A normally loaded half-plane with an edge crack. Int. J. Solids Struct. 21, 399–410 (1985)

    Article  Google Scholar 

  22. Hills, D.A., Nowell, D.: Stress intensity calibrations for closed cracks. J. Strain Anal. 24, 37–43 (1989)

    Article  Google Scholar 

  23. Hills, D.A., Kelly, P.A., Dai, D.N., Korsunsky, A.M.: Solution of Crack Problems—The Distributed Dislocation Technique. Kluwer Academic Publishers, Dordrecht (1996)

    Book  Google Scholar 

  24. Holland, J.H.: Adaptation in Natural and Artificial Systems. MIT Press, Cambridge (1992)

    Book  Google Scholar 

  25. Jin, X., Keer, K.L.: Solution of multiple edge cracks in an elastic half plane. Int. J. Fract. 137, 121–137 (2006)

    Article  Google Scholar 

  26. Khatir, S., Abdel, M.: Fast simulations for solving fracture mechanics inverse problems using POD-RBF XIGA and Jaya algorithm. Eng. Fract. Mech. 205, 285–300 (2019)

    Article  Google Scholar 

  27. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  28. Lanata, F., Grosso, A.: Damage detection and localization for continuous static monitoring of structures using a proper orthogonal decomposition of signals. Smart Mater. Struct. 15, 1811–1829 (2006)

    Article  Google Scholar 

  29. Maheshwari, M., Annamdas, V., Pang, J., Asundi, A., Tjin, S.: Crack monitoring using multiple smart materials; fiber-optic sensors and piezo sensors. Int. J. Smart Nano Mater. 8(1), 41–55 (2017)

    Article  Google Scholar 

  30. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)

    Article  Google Scholar 

  31. Nowell, D., Hills, D.A.: Open cracks at or near free edges. J. Strain Anal. 22, 177–185 (1987)

    Article  Google Scholar 

  32. Pincus, M.: A Monte Carlo method for the approximate solution of certain types of constrained optimization problems. Oper. Res. 18, 1225–1228 (1970)

    Article  MathSciNet  Google Scholar 

  33. Rabinovich, D., Givoli, D., Vigdergauz, S.: XFEM-based crack detection scheme using a genetic algorithm. Int. J. Numer. Methods Eng. 71, 1051–1080 (2007)

    Article  MathSciNet  Google Scholar 

  34. Rabinovich, D., Givoli, D., Vigdergauz, S.: Crack identification by arrival time using XFEM and a genetic algorithm. Int. J. Numer. Methods Eng. 77, 337–359 (2009)

    Article  MathSciNet  Google Scholar 

  35. Rose, J.L., Soley, L.: Ultrasonic guided waves for the detection of anomalies in aircraft components. Mater. Eval. 50, 1080–1086 (2000)

    Google Scholar 

  36. Sheng, C.F.: Boundary element method by dislocation distribution. ASME J.Appl. Mech. 54, 105–109 (1987)

    Article  Google Scholar 

  37. Waisman, H., Chatzi, E., Smyth, A.W.: Detection and quantification of flaws in structures by the extended finite element method and genetic algorithms. Int. J. Numer. Methods Eng. 82, 303–328 (2010)

    MATH  Google Scholar 

  38. Weertman, J.: Dislocation Based Fracture Mechanics. World Scientific Publishing Co. Pvt. Ltd., Singapore (1996)

    Book  Google Scholar 

  39. Zhang, J., Qu, Z., Huang, Q.: Elastic fields of a finite plate containing a circular inclusion by the distributed dislocation method. Arch. Appl. Mech. 86, 701–712 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramdane Boukellif.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Dislocation influence functions

The dislocation influence functions relating infinitesimal dislocations at source points \((\xi ,\eta )\) to stresses in an elastic half-plane at field points (xy) and possessing the unit 1/m are defined as

$$\begin{aligned} G_{xxx}(x,y;\xi ,\eta )= & {} G^{s}_{xxx}+G^{r}_{xxx}\nonumber \\= & {} (\,y-\eta )\left\{ -\frac{1}{r_1^2}-\frac{2x_1^2}{r_1^4}+\frac{1}{r_2^2}+\frac{2x_2^2}{r_2^4}-\frac{4\xi x_2}{r_2^4}+\frac{4\xi ^2}{r_2^4}+\frac{16\xi x_2^3}{r_2^6}-\frac{16\xi ^2x_2^2}{r_2^6}\right\} ,\nonumber \\ G_{xyy}(x,y;\xi ,\eta )= & {} G^{s}_{xyy}+G^{r}_{xyy}\nonumber \\= & {} (\,y-\eta )\left\{ -\frac{1}{r_1^2}+\frac{2x_1^2}{r_1^4}+\frac{1}{r_2^2}-\frac{2x_2^2}{r_2^4}+\frac{2\xi x_2}{r_2^4}-\frac{4\xi ^2}{r_2^4}-\frac{16\xi x_2^3}{r_2^6}+\frac{16\xi ^2x_2^2}{r_2^6}\right\} ,\nonumber \\ G_{xxy}(x,y;\xi ,\eta )= & {} G^{s}_{xxy}+G^{r}_{xxy}\nonumber \\= & {} -\frac{x_1}{r_1^2}+\frac{2x_1^3}{r_1^4}+\frac{x_2}{r_2^2}-\frac{2 \xi }{r_2^4}-\frac{2x_2^3}{r_2^4}+\frac{16\xi x_2^2}{r_2^4}-\frac{12 \xi ^2 x_2}{r_2^4}-\frac{16\xi x_2^4}{r_2^6}+\frac{16\xi ^2 x_2^3}{r_2^6},\nonumber \\ G_{yxx}(x,y;\xi ,\eta )= & {} G^{s}_{yxx}+G^{r}_{yxx}\nonumber \\= & {} -\frac{x_1}{r_1^2}+\frac{2x_1^3}{r_1^4}+\frac{x_2}{r_2^2}-\frac{2 \xi }{r_2^4}-\frac{2x_2^3}{r_2^4}+\frac{8\xi x_2^2}{r_2^4}+\frac{12 \xi ^2 x_2}{r_2^4}+\frac{16\xi x_2^4}{r_2^6}-\frac{16\xi ^2 x_2^3}{r_2^6},\nonumber \\ G_{yyy}(x,y;\xi ,\eta )= & {} G^{s}_{yyy}+G^{r}_{yyy}\nonumber \\= & {} \frac{3x_1}{r_1^2}+\frac{2x_1^3}{r_1^4}+\frac{3x_2}{r_2^2}-\frac{2 \xi }{r_2^4}+\frac{2x_2^3}{r_2^4}+\frac{16\xi x_2^2}{r_2^4}-\frac{12 \xi ^2 x_2}{r_2^4}-\frac{16\xi x_2^4}{r_2^6}+\frac{16\xi ^2 x_2^3}{r_2^6},\nonumber \\ G_{yxy}(x,y;\xi ,\eta )= & {} G^{s}_{yxy}+G^{r}_{yxy}\nonumber \\= & {} (\,y-\eta )\left\{ -\frac{1}{r_1^2}+\frac{2x_1^2}{r_1^4}+\frac{1}{r_2^2}-\frac{2x_2^2}{r_2^4}-\frac{4\xi x_2}{r_2^4}+\frac{4\xi ^2}{r_2^4}+\frac{16\xi x_2^3}{r_2^6}-\frac{16\xi ^2x_2^2}{r_2^6}\right\} \nonumber \\ \end{aligned}$$
(A.1)

where terms including \(r_1\) and \(x_1\) are associated with the Green’s functions \(G^{s}_{ijk}\), and those comprising \(r_2\) and \(x_2\) are related to \(G^{r}_{ijk}\), see Eq. (2). The \(r_1\), \(r_2\), \(x_1\), and \(x_2\) are further defined as

$$\begin{aligned} r_1&=\sqrt{x_1^2+(y-\eta )^2},\,\,\,r_2=\sqrt{x_2^2+(y-\eta )^2}\\ x_1&=x-\xi ,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x_2=x+\xi . \end{aligned}$$

Equation (A.1) refers to the formulation of Eq. (4), where the coordinates \(x,\,y,\,\xi , \eta \) of Eq. (1) have been replaced by \({{\hat{x}}},\,{{\hat{y}}},\,{\hat{\xi }},\, {\hat{\eta }}\), introducing a local coordinate system.

Appendix B. Equations for parameter identification

The following equations are the basis of the inverse problems, seeking crack parameters and boundary loads.

Finite plate with internal cracks:

(B.1)

Semi-infinite plate with two boundaries and internal cracks:

(B.2)

Semi-infinite plate with one boundary and an edge crack:

$$\begin{aligned} \begin{aligned}&\begin{bmatrix} \varepsilon ^*_{{x}{x}}(x,y)\\ \varepsilon ^*_{{y}{y}}(x,y)\\ \gamma ^*_{xy}(x,y) \end{bmatrix} =\frac{1}{E} \begin{bmatrix} \sigma _{{x}{x}}^{\infty }-\nu \sigma _{{y}{y}}^{\infty }\\ \sigma _{{y}{y}}^{\infty }- \nu \sigma _{{x}{x}}^{\infty }\\ (1+\nu )\sigma _{{x}{y}}^{\infty } \end{bmatrix} +\frac{2\mu }{E \pi \left( \kappa +1 \right) } \left[ a_e\sum _{i=1}^{N} \frac{2(1+s_i^e)}{2N+1}\right. \\&\quad \left. .\begin{bmatrix} G_{{x}{x}{x}}^{IJ}(x,y;{s}_i^e)- \nu G_{{x}{y}{y}}^{IJ}(x,y;{s}_i^e)&G_{{y}{x}{x}}^{IJ}(x,y;{s}_i^e)-\nu G_{{y}{y}{y}}^{IJ}(x,y;{s}_i^e)\\ G_{{x}{y}{y}}^{IJ}(x,y;{s}_i^e)- \nu G_{{x}{x}{x}}^{IJ}(x,y;{s}_i^e)&G_{{y}{y}{y}}^{IJ}(x,y;{s}_i^e)-\nu G_{{y}{x}{x}}^{IJ}(x,y;{s}_i^e) \\ (1+\nu ) G_{{x}{x}{y}}^{IJ}(x,y;{s}_i^e)&(1+\nu ) G_{{y}{x}{y}}^{IJ}(x,y;{s}_i^e) \end{bmatrix} \, \begin{bmatrix} \phi _{{x}}({s}_i^e)\\ \phi _{{y}}({s}_i^e) \end{bmatrix} \right. \\&\qquad \left. +\sum _{J=1}^{{\tilde{M}}}a_J\sum _{i=1}^{N} \frac{1}{N}\right. \\&\quad \left. .\begin{bmatrix} G_{{x}{x}{x}}^{IJ}(x,y;{s}_i^J)-\nu G_{{x}{y}{y}}^{IJ}(x,y;{s}_i^J)&G_{{y}{x}{x}}^{IJ}(x,y;{s}_i^J)-\nu G_{{y}{y}{y}}^{IJ}(x,y;{s}_i^J)\\ G_{{x}{y}{y}}^{IJ}(x,y;{s}_i^J)-\nu G_{{x}{x}{x}}^{IJ}(x,y;{s}_i^J)&G_{{y}{y}{y}}^{IJ}(x,y;{s}_i^J)-\nu G_{{y}{x}{x}}^{IJ}(x,y;{s}_i^J)\\ (1+\nu ) G_{{x}{x}{y}}^{IJ}(x,y;{s}_i^J)&(1+\nu ) G_{{y}{x}{y}}^{IJ}(x,y;{s}_i^J) \end{bmatrix} \, \begin{bmatrix} \phi _{{x}}({s}_i^J)\\ \phi _{{y}}({s}_i^J) \end{bmatrix} \right] ,\\&\quad I=1,\ldots ,{\tilde{M}}+1. \end{aligned} \end{aligned}$$
(B.3)

The influence functions \(G_{ijk}^{IJ}\) depend on the unknown crack lengths, while the function \(\phi \) depends on the crack lengths, positions, and inclination angles as well as on the external loads.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boukellif, R., Ricoeur, A. Identification of crack parameters and stress intensity factors in finite and semi-infinite plates solving inverse problems of linear elasticity. Acta Mech 231, 795–813 (2020). https://doi.org/10.1007/s00707-019-02575-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02575-9

Navigation