Skip to main content
Log in

Nonlinear axisymmetric response of temperature-dependent FGM conical shells under rapid heating

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Considering the uncoupled thermoelasticity assumptions, a thermally induced vibration analysis for functionally graded material (FGM) conical shells is performed in this research. Thermo-mechanical properties of the conical shell are assumed to be temperature and position dependent. The conical shell is under rapid heating with various cases of thermal loads on the outer surface, whereas the opposite surface is kept at reference temperature or thermally insulated. Since the ratio of thickness to radius is much smaller than one, the transient heat conduction equation, for simplicity, may be established and solved for one-dimensional condition. Assuming temperature-dependent material properties, the heat conduction equation is nonlinear and should be solved using a numerical method. A hybrid generalized differential quadrature (GDQ) and Crank–Nicolson method is used to obtain the temperature distribution in thickness direction, respectively. Based on the first-order shear deformation theory and geometrically nonlinear assumptions, the equations of motion are obtained applying the Hamilton principle. Discretization of the equations of motion in the space domain and boundary conditions is performed by applying the GDQ method, and then, the system of highly nonlinear coupled ordinary differential equations is solved by the iterative Newmark time-marching scheme and well-known Newton–Raphson method. Since the thermally induced vibration of the conical shells is not reported in the literature, the results are compared with the case of a circular plate. Also, studies of the FGM conical shells for various types of boundary conditions, functionally graded patterns, and thermal loads are provided. The effects of temperature dependency, geometrical nonlinearity, semi-vertex angle, shell length, and shell thickness upon the deflections of the conical shells are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Boley, B.A.: Thermally induced vibrations of beams. J. Aeronaut. Sci. 23(2), 179–182 (1956)

    MATH  Google Scholar 

  2. Boley, B.A., Barber, A.D.: Dynamic response of beams and plates to rapid heating. ASME J. Appl. Mech. 24(3), 413–416 (1957)

    MathSciNet  MATH  Google Scholar 

  3. Kraus, H.: Thermally induced vibrations of thin nonshallow spherical shells. AIAA J. 4(3), 500–505 (1966)

    Article  Google Scholar 

  4. Stroud, R.C., Mayers, J.: Dynamic response of rapidly heated plate elements. AIAA J. 9(1), 76–83 (1970)

    Article  Google Scholar 

  5. Nakajo, Y., Hayashi, K.: Response of simply supported and clamped circular plates to thermal impact. J. Sound Vib. 122(2), 347–356 (1988)

    Article  Google Scholar 

  6. Kiani, Y., Eslami, M.R.: Geometrically non-linear rapid heating of temperature-dependent circular FGM plates. J. Therm. Stress. 37(12), 1495–1518 (2014)

    Article  Google Scholar 

  7. Javani, M., Kiani, Y., Eslami, M.R.: Large amplitude thermally induced vibrations of temperature dependent annular FGM plates. Compos. B Eng. 163(1), 371–383 (2019)

    Article  Google Scholar 

  8. Venkataramana, J., Jana, M.K.: Thermally forced vibrations of beams. J. Sound Vib. 37(2), 291–295 (1974)

    Article  MATH  Google Scholar 

  9. Kidawa-Kukla, J.: Application of the Green functions to the problem of the thermally induced vibration of a beam. J. Sound Vib. 262(4), 865–876 (2003)

    Article  MATH  Google Scholar 

  10. Brush, J.C., Adalis, S., Sadek, I.S., Sloss, J.M.: Structural control of thermoelastic beams for vibration suppression. J. Therm. Stress. 16(3), 249–263 (1993)

    Article  Google Scholar 

  11. Manolis, G.D., Beskos, D.E.: Thermally induced vibrations of beam structures. Comput. Methods Appl. Mech. Eng. 21(3), 337–355 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  12. Adam, C., Heuer, R., Raue, A., Ziegler, F.: Thermally induced vibrations of composite beams with interlayer slip. J. Therm. Stress. 23(8), 747–772 (2000)

    Article  Google Scholar 

  13. Zhang, J., Xiang, Z., Liu, Y., Xue, M.: Stability of thermally induced vibration of a beam subjected to solar heating. AIAA J. 52(3), 660–665 (2014)

    Article  Google Scholar 

  14. Malik, P., Kadoli, R.: Thermal induced motion of functionally graded beams subjected to surface heating. Ain Shams Eng. J. 9(1), 149–160 (2018)

    Article  Google Scholar 

  15. Malik, P., Kadoli, R.: Thermo-elastic response of SUS316-Al2O3 functionally graded beams under various heat loads. Int. J. Mech. Sci. 128–129, 206–223 (2017)

    Article  Google Scholar 

  16. Ghiasian, S.E., Kiani, Y., Eslami, M.R.: Nonlinear rapid heating of FGM beams. Int. J. Non-Linear Mech. 67(1), 74–84 (2014)

    Article  Google Scholar 

  17. Tauchert, T.R.: Thermal shock of orthotropic rectangular plates. J. Therm. Stress. 12(2), 241–258 (1989)

    Article  MathSciNet  Google Scholar 

  18. Das, S.: Vibrations of polygonal plates due to thermal shock. J. Sound Vib. 89(4), 471–476 (1983)

    Article  MATH  Google Scholar 

  19. Tauchert, T.R., Ashidda, F., Sakata, S., Takahashi, Y.: Control of temperature-induced plate vibrations based on speed feedback. J. Therm. Stress. 29(6), 585–606 (2006)

    Article  Google Scholar 

  20. Chang, J.S., Wang, J.H., Tsai, T.Z.: Thermally induced vibrations of thin laminated plates by finite element method. Comput. Struct. 42(1), 117–128 (1992)

    Article  Google Scholar 

  21. Alipour, S.M., Kiani, Y., Eslami, M.R.: Rapid heating of FGM rectangular plates. Acta Mech. 227(2), 421–436 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hill, D.L., Mazumdar, J.: A study of the thermally induced large amplitude vibrations of viscoelastic plates and shallow shells. J. Sound Vib. 116(2), 323–337 (1987)

    Article  Google Scholar 

  23. Mazumdar, J., Hill, D., Clements, D.L.: Thermally induced vibrations of a viscoelastic plate. J. Sound Vib. 73(1), 31–39 (1980)

    Article  MATH  Google Scholar 

  24. Hill, D., Mazumdar, J., Clements, D.L.: Dynamic response of viscoelastic plates of arbitrary shape to rapid heating. Int. J. Solids Struct. 18(11), 937–945 (1982)

    Article  MATH  Google Scholar 

  25. Mazumdar, J., Hill, D.L.: Thermally induced vibrations of viscoelastic shallow shell. J. Sound Vib. 93(2), 189–200 (1984)

    Article  MATH  Google Scholar 

  26. Hong, C.C., Liao, H.W., Lee, L.T., Ke, J.B., Jane, K.C.: Thermally induced vibration of a thermal sleeve with the GDQ method. Int. J. Mech. Sci. 47(12), 1789–1806 (2005)

    Article  MATH  Google Scholar 

  27. Huang, N.N., Tauchert, T.R.: Thermally induced vibration of doubly curved cross-ply laminated panels. J. Sound Vib. 154(3), 485–494 (1992)

    Article  MATH  Google Scholar 

  28. Huang, N.N., Tauchert, T.R.: Large amplitude vibrations of graphite reinforced aluminum cylindrical panels subjected to rapid heating. Compos. Eng. 3(6), 557–566 (1993)

    Article  Google Scholar 

  29. Keibolahi, A., Kiani, Y., Eslami, M.R.: Nonlinear rapid heating of shallow arches. J. Therm. Stress. 41(10–12), 1244–1258 (2018)

    Article  Google Scholar 

  30. Keibolahi, A., Kiani, Y., Eslami, M.R.: Dynamic snap-through of shallow arches under thermal shock. Aerosp. Sci. Technol. 77(1), 545–554 (2018)

    Article  Google Scholar 

  31. Khdeir, A.A.: Thermally induced vibration of cross-ply laminated shallow shells. Acta Mech. 151(3–4), 135–147 (2001)

    Article  MATH  Google Scholar 

  32. Khdeir, A.A.: Thermally induced vibration of cross-ply laminated shallow arches. J. Therm. Stress. 24(11), 1085–1096 (2001)

  33. Chang, J.S., Shyong, J.W.: Thermally induced vibration of laminated circular cylindrical shell panels. J. Therm. Stress. 51(3), 419–427 (1994)

    Google Scholar 

  34. Raja, S., Sinha, P.K., Prathap, G., Dwarakanathan, D.: Thermally induced vibration control of composite plates and shells with piezoelectric active damping. Smart Mater. Struct. 13(4), 939–950 (2004)

    Article  Google Scholar 

  35. Kumar, R., Mishra, B.K., Jain, S.C.: Thermally induced vibration control of cylindrical shell using piezoelectric sensor and actuator. Int. J. Adv. Manuf. Technol. 38(5–6), 551–562 (2008)

    Article  Google Scholar 

  36. Pandey, S., Pradyumna, S.: A finite element formulation for thermally induced vibrations of functionally graded material sandwich plates and shell panels. Compos. Struct. 160(1), 877–886 (2017)

    Article  Google Scholar 

  37. Esmaeili, H.R., Arvin, H., Kiani, Y.: Axisymmetric nonlinear rapid heating of FGM cylindrical shells. J. Therm. Stress. 42(4), 490–505 (2019)

    Article  Google Scholar 

  38. Kiani, Y., Eslami, M.R.: Instability of heated circular FGM plates on a partial Winkler-type foundation. Acta Mech. 224(5), 1045–1060 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kiani, Y., Eslami, M.R.: An exact solution for thermal buckling of annular plate on an elastic medium. Compos. B 45(1), 101–110 (2013)

    Article  Google Scholar 

  40. Kiani, Y., Eslami, M.R.: Nonlinear thermo-inertial stability of thin circular FGM plates. J. Frankl. Inst. 351(2), 1057–1073 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Reddy, J.N., Chin, C.D.: Thermomechanical analysis of functionally graded cylinders and plates. J. Therm. Stress. 21(6), 593–626 (1998)

    Article  Google Scholar 

  42. Reddy, J.N.: An Introduction to Nonlinear Finite Element Analysis. Oxford University Press, Oxford (2004)

    Book  MATH  Google Scholar 

  43. Hetnarski, R.B., Eslami, M.R.: Thermal Stresses, Advanced Theory and Applications. Springer, Amsterdam (2009)

    MATH  Google Scholar 

  44. Hill, R.: A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 13(4), 213–222 (1965)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Eslami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The discretized equations of motion based on GDQ method may be written as

$$\begin{aligned}&A_{11}\left( \sum _{j=1}^{N_x}\bar{B}_{ij}u_{j} + \frac{\sin (\beta _0)}{r(x_{i})}\sum _{j=1}^{N_x}\bar{A}_{ij}u_{j}- \frac{\sin ^{2}(\beta _0)}{r^{2}(x_{i})}u_{i} - \frac{\sin (\beta _{0})\cos (\beta _{0})}{r^{2}(x_{i})}w_{i}+ \left( \sum _{j=1}^{N_x}\bar{B}_{ij}w_{j}\right) \left( \sum _{k=1}^{N_x}\bar{A}_{ik}w_{k}\right) \right. \nonumber \\&\quad +\left. \frac{\sin (\beta _{0})}{2r(x_{i})}\left( \sum _{j=1}^{N_x}\bar{A}_{ij}w_{j}\right) \left( \sum _{k=1}^{N_x}\bar{A}_{ik}w_{k}\right) \right) +B_{11}\left( \sum _{j=1}^{N_x}\bar{B}_{ij}\varphi _{j} + \frac{\sin (\beta _0)}{r(x_{i})}\sum _{j=1}^{N_x}\bar{A}_{ij}\varphi _{j}- \frac{\sin ^{2}(\beta _0)}{r^{2}(x_{i})}\varphi _{i} \right) \nonumber \\&\quad +A_{12}\left( \frac{\cos (\beta _0)}{r(x_{i})}\sum _{j=1}^{N_x}\bar{A}_{ij}w_{j}- \frac{\sin (\beta _{0})}{2r(x_{i})}\left( \sum _{j=1}^{N_x}\bar{A}_{ij}w_{j}\right) \left( \sum _{k=1}^{N_x}\bar{A}_{ik}w_{k}\right) \right) = I_1\ddot{u}_i+I_2\ddot{\varphi }_{i},\end{aligned}$$
(A.1)
$$\begin{aligned}&A_{11}\left( -\frac{\cos (\beta _{0})\sin (\beta _{0})}{r^{2}(x_{i})}u_{i} - \frac{\cos ^{2}(\beta _{0})}{r^{2}(x_{i})}w_{i} + \left( \sum _{j=1}^{N_x}\bar{B}_{ij}u_{j} \right) \left( \sum _{k=1}^{N_x}\bar{A}_{ik}w_{k} \right) + \left( \sum _{j=1}^{N_x}\bar{A}_{ij}u_{j} \right) \left( \sum _{k=1}^{N_x}\bar{B}_{ik}w_{k} \right) \right. \nonumber \\&\quad +\frac{\sin (\beta _{0})}{r(x_{i})}\left( \sum _{j=1}^{N_x}\bar{A}_{ij}u_{j} \right) \left( \sum _{k=1}^{N_x}\bar{A}_{ik}w_{k} \right) + \frac{3}{2}\left( \sum _{j=1}^{N_x}\bar{A}_{ij}w_{j} \right) \left( \sum _{k=1}^{N_x}\bar{A}_{ik}w_{k} \right) \left( \sum _{l=1}^{N_x}\bar{B}_{il}w_{l}\right) \nonumber \\&\quad +\left. \frac{\sin (\beta _{0})}{2r(x_{i})}\left( \sum _{j=1}^{N_x}\bar{A}_{ij}w_{j} \right) \left( \sum _{k=1}^{N_x}\bar{A}_{ik}w_{k} \right) \left( \sum _{l=1}^{N_x}\bar{A}_{il}w_{l} \right) \right) +B_{11}\left( -\frac{\cos (\beta _{0})\sin (\beta _{0})}{r^{2}(x_{i})}\varphi _{i}\right. \nonumber \\&\quad \left. +\left( \sum _{j=1}^{N_x}\bar{B}_{ij}\varphi _{j} \right) \left( \sum _{k=1}^{N_x}\bar{A}_{ik}w_{k} \right) + \left( \sum _{j=1}^{N_x}\bar{A}_{ij}\varphi _{j} \right) \left( \sum _{k=1}^{N_x}\bar{B}_{ik}w_{k} \right) + \frac{\sin (\beta _{0})}{r(x_{i})}\left( \sum _{j=1}^{N_x}\bar{A}_{ij}\varphi _{j} \right) \left( \sum _{k=1}^{N_x}\bar{A}_{ik}w_{k}\right) \right) \nonumber \\&\quad +\frac{A_{12}}{r(x_{i})}\left( -\cos (\beta _{0})\sum _{j=1}^{N_x}\bar{A}_{ij}u_{j} + \sin (\beta _{0})\left( \sum _{j=1}^{N_x}\bar{A}_{ij}u_{j}\right) \left( \sum _{k=1}^{N_x}\bar{A}_{ik}w_{k}\right) + \sin (\beta _0)u_{i}\sum _{j=1}^{N_x}\bar{B}_{ij}w_{j}\right. \nonumber \\&\quad +\left. \cos (\beta _{0})w_{i}\sum _{j=1}^{N_x}\bar{B}_{ij}w_{j} + \frac{\cos (\beta _{0})}{2}\left( \sum _{j=1}^{N_x}\bar{A}_{ij}w_{j}\right) \left( \sum _{k=1}^{N_x}\bar{A}_{ik}w_{k} \right) \right) +\frac{B_{12}}{r(x_{i})}\left( -\cos (\beta _{0})\sum _{j=1}^{N_x}\bar{A}_{ij}\varphi _{j} \right. \nonumber \\&\quad \left. + \sin (\beta _{0})\left( \sum _{j=1}^{N_x}\bar{A}_{ij}\varphi _{j}\right) \left( \sum _{k=1}^{N_x}\bar{A}_{ik}w_{k}\right) +\sin (\beta _0)\varphi _{i}\sum _{j=1}^{N_x}\bar{B}_{ij}w_{j}\right) +A_{55}\left( \sum _{j=1}^{N_x}\bar{A}_{ij}\varphi _{j}+ \frac{\sin (\beta _{0})}{r(x_{i})}\varphi _{i}\right. \nonumber \\&\quad +\left. \sum _{j=1}^{N_x}\bar{B}_{ij}w_{j} +\frac{\sin (\beta _{0})}{r(x_{i})}\sum _{j=1}^{N_x}\bar{A}_{ij}w_{j}\right) -N^\mathrm{T}\left( \sum _{j=1}^{N_x}\bar{B}_{ij}w_{j}+ \frac{\sin (\beta _{0})}{r(x_{i})}\sum _{j=1}^{N_x}\bar{A}_{ij}w_{j}\right) + \frac{\cos (\beta _0)}{r(x_{i})}N^\mathrm{T} =I_1\ddot{w}_i,\end{aligned}$$
(A.2)
$$\begin{aligned}&B_{11}\left( \sum _{j=1}^{N_x}\bar{B}_{ij}u_{j} + \frac{\sin (\beta _0)}{r(x_{i})}\sum _{j=1}^{N_x}\bar{A}_{ij}u_{j}- \frac{\sin ^{2}(\beta _0)}{r^{2}(x_{i})}u_{i} - \frac{\sin (\beta _{0})\cos (\beta _{0})}{r^{2}(x_{i})}w_{i} +\left( \sum _{j=1}^{N_x}\bar{B}_{ij}w_{j}\right) \left( \sum _{k=1}^{N_x}\bar{A}_{ik}w_{k}\right) \right. \nonumber \\&\quad +\left. \frac{\sin (\beta _{0})}{2r(x_{i})}\left( \sum _{j=1}^{N_x}\bar{A}_{ij}w_{j}\right) \left( \sum _{k=1}^{N_x}\bar{A}_{ik}w_{k}\right) \right) +D_{11}\left( \sum _{j=1}^{N_x}\bar{B}_{ij}\varphi _{j} + \frac{\sin (\beta _0)}{r(x_{i})}\sum _{j=1}^{N_x}\bar{A}_{ij}\varphi _{j}- \frac{\sin ^{2}(\beta _0)}{r^{2}(x_{i})}\varphi _{i} \right) \nonumber \\&\quad {+}B_{12}\left( \frac{\cos (\beta _0)}{r(x_{i})}\sum _{j=1}^{N_x}\bar{A}_{ij}w_{j}{-} \frac{\sin (\beta _{0})}{2r(x_{i})}\left( \sum _{j=1}^{N_x}\bar{A}_{ij}w_{j}\right) \left( \sum _{k=1}^{N_x}\bar{A}_{ik}w_{k}\right) \right) {-}A_{55}\left( \varphi _{i}{+}\sum _{j=1}^{N_x}\bar{A}_{ij}w_{j}\right) {=} I_2\ddot{u}_i{+}I_3\ddot{\varphi }_{i} \end{aligned}$$
(A.3)

where \(i=2,3,\ldots ,N_{x}-1\). Also, the boundary conditions should be discretized using GDQ method as follows:

$$\begin{aligned} u_{s}&=0 \qquad \mathrm {or} \qquad A_{11}\left( \sum _{j=1}^{N_x}\bar{A}_{sj}w_{j}+\frac{1}{2}\left( \sum _{j=1}^{N_x}\bar{A}_{sj}w_{j}\right) \left( \sum _{k=1}^{N_x}\bar{A}_{sk}w_{k}\right) \right) +A_{12}\left( \frac{\sin (\beta _{0}) }{r(x_s)}u_{s}+\frac{\cos (\beta _{0})}{r(x_s)}w_{s}\right) \nonumber \\&+B_{11}\sum _{j=1}^{N_x}\bar{A}_{sj}\varphi _{j}+B_{12}\frac{\sin (\beta _{0})}{r(x_s)} \varphi _{s} -N^T=0, \quad s=1,N_{x},\end{aligned}$$
(A.4)
$$\begin{aligned} w_{s}&=0 \qquad \mathrm {or} \qquad A_{55}\left( \sum _{j=1}^{N_x}\bar{A}_{sj} w_{j} + \varphi _{s}\right) + \left( \sum _{l=1}^{N_x}\bar{A}_{sl}w_{l}\right) \left\{ A_{11}\left( \sum _{j=1}^{N_x}\bar{A}_{sj} u_{j} + \frac{1}{2} \left( \sum _{j=1}^{N_x}\bar{A}_{sj}w_{j}\right) \right. \right. \nonumber \\&\left. \left( \sum _{k=1}^{N_x}\bar{A}_{sk}w_{k}\right) \right) +A_{12}\left( \frac{\sin (\beta _0)}{r(x_{s})}u_{s} + \frac{\cos (\beta _0)}{r(x_{s})}w_{s}\right) + B_{11} \sum _{j=1}^{N_x}\bar{A}_{sj} \varphi _{j}\nonumber \\&\left. +B_{12} \frac{\sin (\beta _0)}{r(x_{s})} \varphi _{s}-N^T\right\} =0, \quad s=1,N_{x},\end{aligned}$$
(A.5)
$$\begin{aligned} \varphi _{s}&=0 \qquad \mathrm {or} \qquad B_{11}\left( \sum _{j=1}^{N_x}\bar{A}_{sj}w_{j}+\frac{1}{2}\left( \sum _{j=1}^{N_x}\bar{A}_{sj}w_{j}\right) \left( \sum _{k=1}^{N_x}\bar{A}_{sk}w_{k}\right) \right) +B_{12}\left( \frac{\sin (\beta _{0}) }{r(x_s)}u_{s}+\frac{\cos (\beta _{0})}{r(x_s)}w_{s}\right) \nonumber \\&+D_{11} \sum _{j=1}^{N_x}\bar{A}_{sj}\varphi _{j} +D_{12} \frac{\sin (\beta _{0})}{r(x_s)} \varphi _{s} -M^T=0, \quad s=1,N_{x}, \end{aligned}$$
(A.6)

where \(\bar{A}_{ij}\) and \(\bar{B}_{ij}\) are weighting coefficients of the first- and second-order derivative, respectively, and are defined as follows:

$$\begin{aligned}&\bar{A}_{ij}= {\left\{ \begin{array}{ll} \frac{\Upsilon (x_i)}{(x_i-x_j)\Upsilon (x_j)}\quad &{}\hbox { when }\quad i\ne j\\ -\sum \limits _{k=1,k\ne i}^{N_{x}}\bar{A}_{ik} \qquad &{}\hbox { when }\quad i=j \end{array}\right. }\qquad i,j=1,2,\ldots ,N_{x} \end{aligned}$$
(A.7)

in which

$$\begin{aligned} \Upsilon (x_i)= \prod _{k=1,k\ne i}^{N_{x}} (x_i-x_k) \end{aligned}$$
(A.8)

and

$$\begin{aligned}&{\left\{ \begin{array}{ll} \bar{B}_{ij} = 2 \left( \bar{A}_{ii} \bar{A}_{ij} -\frac{\bar{A}_{ij}}{(x_i-x_j)}\right) \\ i,j=1,2,\ldots ,N_{x} \end{array}\right. }&\mathrm{when} \quad i\ne j, \nonumber \\&{\left\{ \begin{array}{ll} \bar{B}_{ii} = -\sum \limits _{k=1,k\ne i}^{N_{x}} \bar{B}_{ik} \\ i=1,2,\ldots ,N_{x} \end{array}\right. }&\mathrm{when} \quad i=j. \end{aligned}$$
(A.9)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javani, M., Kiani, Y. & Eslami, M.R. Nonlinear axisymmetric response of temperature-dependent FGM conical shells under rapid heating. Acta Mech 230, 3019–3039 (2019). https://doi.org/10.1007/s00707-019-02459-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02459-y

Navigation