Skip to main content
Log in

Transient response in a piezoelastic medium due to the influence of magnetic field with memory-dependent derivative

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Enlightened by the Caputo fractional derivative, the present study deals with a novel mathematical model of generalized thermoelasticity to investigate the transient phenomena for a piezoelastic half-space due to the influence of a magnetic field in the context of the dual-phase-lag model of generalized thermoelasticity, which is defined in an integral form of a common derivative on a slipping interval by incorporating the memory-dependent heat transfer. The bounding plane of the medium is assumed to be stress free and subjected to a thermal shock. Employing the Laplace transform as a tool, the problem is transformed to the space domain, where the solution in the space–time domain is achieved by applying a suitable numerical technique based on Fourier series expansion technique. According to the graphical representations corresponding to the numerical results, conclusions about the new theory are constructed. Excellent predictive capability is demonstrated due to the presence of electric field, memory-dependent derivative and magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sur, A., Kanoria, M.: Propagation of thermal waves in a functionally graded thick plate. Math. Mech. Solids 22(4), 718–736 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Sur, A., Kanoria, M.: Thermoelastic interaction in a viscoelastic functionally graded half-space under three phase lag model. Eur. J. Comput. Mech. 23, 179–198 (2014)

    Article  Google Scholar 

  3. Das, P., Kanoria, M.: Study of finite thermal waves in a magneto-thermo-elastic rotating medium. J. Therm. Stress. 37, 405–428 (2014)

    Article  Google Scholar 

  4. Das, P., Kar, A., Kanoria, M.: Analysis of magneto-thermoelastic response in a transversely isotropic hollow cylinder under thermal shock with three-phase-lag effect. J. Therm. Stress. 36, 239–258 (2013)

    Article  Google Scholar 

  5. Sur, A., Pal, P., Kanoria, M.: Modeling of memory-dependent derivative in a fibre-reinforced plate under gravitational effect. J. Therm. Stress. 41(8), 973–992 (2018). https://doi.org/10.1080/01495739.2018.1447316

    Article  Google Scholar 

  6. Karmakar, R., Sur, A., Kanoria, M.: Generalized thermoelastic problem of an infinite body with a spherical cavity under dual-phase-lags. J. Appl. Mech. Tech. Phys. 57(4), 652–665 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Sur, A., Kanoria, M.: Finite thermal wave propagation in a half-space due to variable thermal loading. Appl. Appl. Math. 9(1), 94–120 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Tzou, D.Y.: A unified approach for heat conduction from macro to micro-scales. ASME J. Heat Transf. 117, 8–16 (1995)

    Article  Google Scholar 

  9. Ignaczak, J., Ostoja-Starzewski, M.: Thermoelasticity with Finite Wave Speeds. Oxford University Press, New York. ISBN: 978-0-19-954164-5 (2010)

  10. Quintanilla, R., Racke, R.: A note on stability in dual-phase-lag heat conduction. Int. J. Heat Mass Transf. 49, 1209–1213 (2006)

    Article  MATH  Google Scholar 

  11. Chakravorty, S., Ghosh, S., Sur, A.: Thermo-viscoelastic interaction in a three-dimensional problem subjected to fractional heat conduction. Procedia Engrng. 173, 851–858 (2017)

    Article  Google Scholar 

  12. Sur, A., Kanoria, M.: Fractional order generalized thermoelastic functionally graded solid with variable material properties. J. Solid Mech. 6, 54–69 (2014)

    Google Scholar 

  13. Sur, A., Kanoria, M.: Three dimensional thermoelastic problem under two-temperature theory. Int. J. Comput. Methods. 14(3), 1750030 (2017). https://doi.org/10.1142/S021987621750030X

    Article  MathSciNet  MATH  Google Scholar 

  14. Diethelm, K.: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  15. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent II. Geophys. J. R. Astron. Soc. 3, 529–539 (1967)

    Article  Google Scholar 

  16. Caputo, M., Mainardi, F.: Linear model of dissipation in anelastic solids. Rivis. ta. el. Nuovo. cimento. 1, 161–198 (1971)

    Article  Google Scholar 

  17. Sur, A., Kanoria, M.: Fractional order two-temperature thermoelasticity with finite wave speed. Acta Mech. 223, 2685–2701 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Purkait, P., Sur, A., Kanoria, M.: Thermoelastic interaction in a two dimensional infinite space due to memory dependent heat transfer. Int. J. Adv. Appl. Math. Mech. 5(1), 28–39 (2017)

    MathSciNet  Google Scholar 

  19. Yu, Y.J., Hu, W., Tian, X.G.: A novel generalized thermoelasticity model based on memory-dependent derivative. Int. J. Eng. Sci. 81, 123–134 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ezzat, M.A., El-Karamany, A.S., El-Bary, A.A.: Electro-thermoelasticity theory with memory-dependent derivative heat transfer. Int. J. Eng. Sci. 99, 22–38 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ezzat, M.A., El-Bary, A.A.: Memory-dependent derivatives theory of thermo-viscoelasticity involving two-temperature. J. Mech. Sci. Technol. 29, 4273–4279 (2015)

    Article  Google Scholar 

  22. Ezzat, M.A., El-Karamany, A.S., El-Bary, A.A.: Generalized thermoelasticity with memory-dependent derivatives involving two temperatures. Mech. Adv. Mater. Struct. 23, 545–553 (2016)

    Article  Google Scholar 

  23. Ezzat, M.A., El-Karamany, A.S., El-Bary, A.A.: Modeling of memory-dependent derivative in generalized thermoelasticity. Eur. Phys. J. Plus 131, 372 (2016)

    Article  Google Scholar 

  24. Lotfy, K., Sarkar, N.: Memory-dependent derivatives for photothermal semiconducting medium in generalized thermoelasticity with two-temperature. Mech. Time-Dep. Mater. 21(4), 519–534 (2017). https://doi.org/10.1007/s11043-017-9340-5

    Article  Google Scholar 

  25. Wang, J.L., Li, H.F.: Surpassing the fractional derivative: concept of the memory-dependent derivative. Comput. Math. Appl. 62, 1562–1567 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sur, A., Pal, P., Mondal, S., Kanoria, M.: Finite element analysis in a fiber-reinforced cylinder due to memory-dependent heat transfer. Acta Mech. (2019). https://doi.org/10.1007/s00707-018-2357-2

    Google Scholar 

  27. El-Karamany, A.S., Ezzat, M.A.: Thermoelastic diffusion with memory-dependent derivative. J. Therm. Stress. 39, 1035–1050 (2016)

    Article  Google Scholar 

  28. Sur, A., Kanoria, M.: Modeling of memory-dependent derivative in a fibre-reinforced plate. Thin Walled Struct. (2017). https://doi.org/10.1016/j.tws.2017.05.005

    MATH  Google Scholar 

  29. Sherief, H.H., Helmy, A.K.: A two dimensional problem for a half-space in magneto-thermoelasticity with thermal relaxation. Int. J. Eng. Sci. 40, 587–604 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Othman, M.I.A.: Generalized electromagneto-thermoelastic plane waves by thermal shock problem in a finite conductivity half-space with one relaxation time. Multidiscip. Model. Mater. Struct. 1, 231–250 (2005)

    Article  Google Scholar 

  31. Othman, M.I.A., Zidan, M.E.M., Hilal, M.I.M.: The effect of magnetic field on a rotating thermoelastic medium with voids under thermal loading due to laser pulse with energy dissipation. Canad. J. Phys. 92, 1359–1371 (2014)

    Article  Google Scholar 

  32. Sur, A., Kanoria, M.: Fibre-reinforced magneto-thermoelastic rotating medium with fractional heat conduction. Proc. Eng. 127, 605–612 (2015)

    Article  Google Scholar 

  33. Sur, A., Kanoria, M.: Modeling of fibre-reinforced magneto-thermoelastic plate with heat sources. Procedia Eng. 173, 875–882 (2017)

    Article  Google Scholar 

  34. Kalamkarov, A.L.: Modeling of anisotropic magneto-piezoelastic materials. In: Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED), XXIst International Seminar/Workshop, IEEE, pp. 113–117 (2016)

  35. Nixdorf, T.A., Pan, E.: Static plane-strain deformation of transversely isotropic magneto-electro-elastic and layered cylinders to general surface loads. Appl. Math. Model. 60, 208–219 (2018)

    Article  MathSciNet  Google Scholar 

  36. Nedin, R.D., Dudarev, V.V., Vatulyan, A.O.: Vibrations of inhomogeneous piezoelectric bodies in conditions of residual stress–strain state. Appl. Math. Model. 63, 219–242 (2018)

    Article  MathSciNet  Google Scholar 

  37. Mindlin, R.D.: On the equations of motion of piezoelectric crystals. In: Muskilishivili, N.I. (ed.) Problems of Continuum Mechanics, 70th Birthday Volume, pp. 282–290. SIAM, Philadelphia (1961)

    Google Scholar 

  38. Tiersten, H.F.: On the nonlinear equations of thermoelectroelasticity. Int. J. Eng. Sci. 9, 587–604 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  39. Mindlin, R.D.: Equations of high frequency vibrations of thermo-piezoelectric plate. Int. J. Solids Struct. 10, 625–637 (1974)

    Article  MATH  Google Scholar 

  40. Nowacki, W.: Foundations of linear piezoelectricity, In H. Parkus (ed.), Electromagnetic Interactions in Elastic Solids. Springer, Wein, Chapter 1 (1979)

  41. Aouadi, M.: Generalized thermo-piezoelectric problems with temperature-dependent properties. Int. J. Solids Struct. 43, 6347–6358 (2006)

    Article  MATH  Google Scholar 

  42. Banik, S., Kanoria, M.: Study of two-temperature generalized thermo-piezoelastic problem. J. Therm. Stress. 36, 71–93 (2013)

    Article  Google Scholar 

  43. Ezzat, M.A., El-Karamany, A.S., El-Bary, A.A.: A novel magneto-thermoelasticity theory with memory-dependent derivative. J. Electromagn. Waves Appl. 29(8), 1018–1031 (2015). https://doi.org/10.1080/09205071.2015.1027795

    Article  Google Scholar 

  44. Honig, G., Hirdes, U.: A method for the numerical inversion of the Laplace transform. J. Comput. Appl. Math. 10, 113–132 (1984)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to the Editor and reviewers for their valuable suggestions for the improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kanoria.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, S., Sur, A. & Kanoria, M. Transient response in a piezoelastic medium due to the influence of magnetic field with memory-dependent derivative. Acta Mech 230, 2325–2338 (2019). https://doi.org/10.1007/s00707-019-02380-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02380-4

Navigation